A live-attenuated viral vector vaccine protects mice against lethal challenge with Kyasanur Forest disease virus.

Bharti Bhatia, Kimberly Meade-White, Elaine Haddock, Friederike Feldmann, Andrea Marzi, Heinz Feldmann
Author Information
  1. Bharti Bhatia: Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
  2. Kimberly Meade-White: Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
  3. Elaine Haddock: Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA. ORCID
  4. Friederike Feldmann: Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA. ORCID
  5. Andrea Marzi: Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA. ORCID
  6. Heinz Feldmann: Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA. feldmannh@niaid.nih.gov. ORCID

Abstract

Kyasanur Forest disease virus (KFDV) is a tick-borne flavivirus endemic in India known to cause severe hemorrhagic and encephalitic disease in humans. In recent years, KFDV has spread beyond its original endemic zone raising public health concerns. Currently, there is no treatment available for KFDV but a vaccine with limited efficacy is used in India. Here, we generated two new KFDV vaccine candidates based on the vesicular stomatitis virus (VSV) platform. We chose the VSV-Ebola virus (VSV-EBOV) vector either with the full-length or a truncated EBOV glycoprotein as the vehicle to express the precursor membrane (prM) and envelope (E) proteins of KFDV (VSV-KFDV). For efficacy testing, we established a mouse disease model by comparing KFDV infections in three immunocompetent mouse strains (BALB/c, C57Bl/6, and CD1). Both vaccine vectors provided promising protection against lethal KFDV challenge in the BALB/c model following prime-only prime-boost and immunizations. Only prime-boost immunization with VSV-KFDV expressing full-length EBOV GP resulted in uniform protection. Hyperimmune serum derived from prime-boost immunized mice protected naïve BALB/c mice from lethal KFDV challenge indicating the importance of antibodies for protection. The new VSV-KFDV vectors are promising vaccine candidates to combat an emerging, neglected public health problem in a densely populated part of the world.

References

  1. PLoS One. 2014 Jun 20;9(6):e100301 [PMID: 24950196]
  2. J Gen Virol. 2010 Jun;91(Pt 6):1450-60 [PMID: 20147516]
  3. Indian J Pathol Bacteriol. 1967 Jan;10(1):25-32 [PMID: 6036490]
  4. Cell Discov. 2020 Feb 4;6:5 [PMID: 32025335]
  5. Microorganisms. 2019 Sep 29;7(10): [PMID: 31569539]
  6. Microorganisms. 2020 Sep 12;8(9): [PMID: 32932653]
  7. Indian J Med Res. 1959 Mar;47(2):133-8 [PMID: 13653739]
  8. PLoS Negl Trop Dis. 2014 Jun 12;8(6):e2934 [PMID: 24922308]
  9. Prog Med Virol. 1958;1:248-79 [PMID: 13579010]
  10. Am J Trop Med Hyg. 2019 May;100(5):1275-1277 [PMID: 30860018]
  11. J Nepal Health Res Counc. 2016 Sep;14(34):214-218 [PMID: 28327690]
  12. Vaccines (Basel). 2021 Jun 10;9(6): [PMID: 34200548]
  13. J Virol. 2007 Feb;81(4):1821-37 [PMID: 17151111]
  14. PLoS One. 2011 Jan 11;6(1):e16059 [PMID: 21264311]
  15. Vaccine. 2019 Mar 14;37(12):1630-1637 [PMID: 30765167]
  16. Hum Vaccin Immunother. 2014;10(10):2819-33 [PMID: 25483679]
  17. J Infect Dis. 2011 Nov;204 Suppl 3:S825-32 [PMID: 21987758]
  18. Virology. 2011 Mar 15;411(2):306-15 [PMID: 21255816]
  19. Rev Infect Dis. 1989 May-Jun;11 Suppl 4:S854-9 [PMID: 2665018]
  20. Sci Rep. 2020 Sep 17;10(1):15306 [PMID: 32943687]
  21. Indian J Med Res. 2018 Aug;148(2):145-150 [PMID: 30381537]
  22. Science. 2014 Jul 11;345(6193):130-1, 133 [PMID: 25013042]
  23. Science. 2015 Aug 14;349(6249):739-42 [PMID: 26249231]
  24. Front Immunol. 2020 Feb 26;11:334 [PMID: 32174923]
  25. PLoS Pathog. 2019 Jan 24;15(1):e1007474 [PMID: 30677097]
  26. Front Cell Infect Microbiol. 2018 May 09;8:149 [PMID: 29868505]
  27. Vaccine. 2015 Jun 4;33(24):2823-9 [PMID: 25865472]
  28. Sci Adv. 2018 Jul 04;4(7):eaar4297 [PMID: 29978039]
  29. mBio. 2019 May 28;10(3): [PMID: 31138743]
  30. J Infect Dis. 2011 Nov;204 Suppl 3:S1066-74 [PMID: 21987743]
  31. PLoS Negl Trop Dis. 2011 Oct;5(10):e1352 [PMID: 21991403]
  32. J Virol. 2004 May;78(10):5458-65 [PMID: 15113924]
  33. J Virol Methods. 2012 Dec;186(1-2):49-54 [PMID: 22874757]
  34. Antiviral Res. 2012 Dec;96(3):353-62 [PMID: 23110991]
  35. NPJ Vaccines. 2017 Mar 13;2:5 [PMID: 29263866]
  36. Hum Vaccin Immunother. 2017 Dec 2;13(12):2883-2893 [PMID: 28699812]
  37. Nature. 2016 Aug 25;536(7617):474-8 [PMID: 27355570]
  38. J Infect Dis. 2015 Oct 1;212 Suppl 2:S435-42 [PMID: 26022441]
  39. Rev Med Virol. 2020 Jul;30(4):e2100 [PMID: 32101633]
  40. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1893-8 [PMID: 23319647]
  41. Adv Virus Res. 1986;31:103-68 [PMID: 2428213]
  42. Front Immunol. 2019 Sep 20;10:2260 [PMID: 31616432]
  43. PLoS Negl Trop Dis. 2015 Oct 23;9(10):e0004167 [PMID: 26495991]
  44. EBioMedicine. 2019 Nov;49:223-231 [PMID: 31631035]
  45. Sci Rep. 2020 Jul 28;10(1):12561 [PMID: 32724103]
  46. F1000Res. 2012 Dec 07;1:61 [PMID: 24627765]
  47. J Infect Dis. 2015 Oct 1;212 Suppl 2:S384-8 [PMID: 25957964]
  48. Emerg Infect Dis. 2015 Jan;21(1):146-9 [PMID: 25531141]
  49. Cell Rep. 2018 Jul 24;24(4):1050-1059.e5 [PMID: 30044972]
  50. Indian J Med Sci. 1966 May;20(5):316-20 [PMID: 4957898]
  51. NPJ Vaccines. 2020 Jan 10;5(1):4 [PMID: 31934358]
  52. Indian J Med Res. 1968 Apr;56(4):589-93 [PMID: 5679151]
  53. Front Microbiol. 2017 Aug 17;8:1571 [PMID: 28861075]
  54. J Virol. 2007 Nov;81(21):11828-39 [PMID: 17715236]
  55. Sci Rep. 2018 Jul 23;8(1):11043 [PMID: 30038228]
  56. J Virol. 1998 Apr;72(4):3076-81 [PMID: 9525632]
  57. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4477-81 [PMID: 7753828]
  58. Indian J Med Sci. 1957 May;11(5):341-2 [PMID: 13448774]
  59. PLoS Negl Trop Dis. 2013;7(1):e2025 [PMID: 23359421]
  60. Nat Med. 2005 Jul;11(7):786-90 [PMID: 15937495]
  61. Emerg Infect Dis. 2009 Sep;15(9):1431-7 [PMID: 19788811]
  62. J Infect Dis. 2011 Nov;204 Suppl 3:S1090-7 [PMID: 21987746]
  63. J Virol. 2014 Oct;88(20):11955-64 [PMID: 25100844]
  64. Indian J Med Sci. 1993 May;47(5):124-30 [PMID: 8225455]

Word Cloud

Created with Highcharts 10.0.0KFDVvaccinediseasevirusVSV-KFDVBALB/cprotectionlethalchallengeprime-boostmiceKyasanurForestendemicIndiapublichealthefficacynewcandidatesvectorfull-lengthEBOVmousemodelvectorspromisingtick-borneflavivirusknowncauseseverehemorrhagicencephalitichumansrecentyearsspreadbeyondoriginalzoneraisingconcernsCurrentlytreatmentavailablelimitedusedgeneratedtwobasedvesicularstomatitisVSVplatformchoseVSV-EbolaVSV-EBOVeithertruncatedglycoproteinvehicleexpressprecursormembraneprMenvelopeEproteinstestingestablishedcomparinginfectionsthreeimmunocompetentstrainsC57Bl/6CD1providedfollowingprime-onlyimmunizationsimmunizationexpressingGPresulteduniformHyperimmuneserumderivedimmunizedprotectednaïveindicatingimportanceantibodiescombatemergingneglectedproblemdenselypopulatedpartworldlive-attenuatedviralprotects

Similar Articles

Cited By