Transcriptional Pathology Evolves over Time in Rat Hippocampus after Lateral Fluid Percussion Traumatic Brain Injury.

Rinaldo Catta-Preta, Iva Zdilar, Bradley Jenner, Emily T Doisy, Kayleen Tercovich, Alex S Nord, Gene G Gurkoff
Author Information
  1. Rinaldo Catta-Preta: Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA.
  2. Iva Zdilar: Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA.
  3. Bradley Jenner: Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA.
  4. Emily T Doisy: Department of Neurological Surgery, University of California Davis, Davis, California, USA.
  5. Kayleen Tercovich: Department of Neurological Surgery, University of California Davis, Davis, California, USA.
  6. Alex S Nord: Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA.
  7. Gene G Gurkoff: Department of Neurological Surgery, University of California Davis, Davis, California, USA.

Abstract

Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical, cellular, and behavioral dimensions. Rodent models offer an opportunity to study the temporal progression of disease from injury to recovery. Transcriptomic and epigenomic analysis were applied to evaluate gene expression in ipsilateral hippocampus at 1 and 14 days after sham ( = 2 and 4, respectively per time point) and moderate lateral fluid percussion injury ( = 4 per time point). This enabled the identification of dynamic changes and differential gene expression (differentially expressed genes; DEGs) modules linked to underlying epigenetic response. We observed acute signatures associated with cell death, astrocytosis, and neurotransmission that largely recovered by 2 weeks. Inflammation and immune signatures segregated into upregulated modules with distinct expression trajectories and functions. Whereas most down-regulated genes recovered by 14 days, two modules with delayed and persistent changes were associated with cholesterol metabolism, amyloid beta clearance, and neurodegeneration. Differential expression was paralleled by changes in histone H3 lysine residue 4 trimethylation at the promoters of DEGs at 1 day post-TBI, with the strongest changes observed for Inflammation and immune response genes. These results demonstrate how integrated genomics analysis in the pre-clinical setting has the potential to identify stage-specific biomarkers for injury and/or recovery. Though limited in scope here, our general strategy has the potential to capture pathological signatures over time and evaluate treatment efficacy at the systems level.

Keywords

References

  1. Nat Rev Mol Cell Biol. 2020 Apr;21(4):225-245 [PMID: 31848472]
  2. Neurosci Lett. 2016 Jun 20;625:26-33 [PMID: 27155457]
  3. Cells. 2019 Jan 07;8(1): [PMID: 30621069]
  4. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  5. Cell Tissue Res. 2012 Jul;349(1):169-80 [PMID: 22362507]
  6. J Neuroinflammation. 2021 Jul 5;18(1):151 [PMID: 34225752]
  7. J Neurotrauma. 2018 Sep 1;35(17):2056-2066 [PMID: 29409384]
  8. Front Neurosci. 2021 Mar 22;15:636259 [PMID: 33828448]
  9. J Neuropathol Exp Neurol. 2012 Apr;71(4):348-59 [PMID: 22437344]
  10. Acta Neuropathol Commun. 2021 Jul 19;9(1):126 [PMID: 34281628]
  11. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  12. Sci Rep. 2015 Mar 05;5:8769 [PMID: 25740212]
  13. Sci Rep. 2016 Aug 17;6:31570 [PMID: 27530814]
  14. Clin Psychopharmacol Neurosci. 2020 May 31;18(2):174-187 [PMID: 32329299]
  15. Cell. 2013 Dec 19;155(7):1521-31 [PMID: 24360275]
  16. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  17. Trends Neurosci. 2005 Sep;28(9):487-93 [PMID: 16023742]
  18. Brain Res. 2008 Aug 21;1226:181-91 [PMID: 18582446]
  19. Prog Mol Biol Transl Sci. 2018;157:263-298 [PMID: 29933953]
  20. Hum Mutat. 2012 Dec;33(12):1630-4 [PMID: 22829467]
  21. J Genet. 2018 Jul;97(3):795-806 [PMID: 30027910]
  22. Neurology. 2018 Jan 16;90(3):e188-e196 [PMID: 29282330]
  23. Br J Pharmacol. 2016 Feb;173(4):681-91 [PMID: 25939377]
  24. Front Neurosci. 2015 Apr 22;9:128 [PMID: 25954146]
  25. J Neurosci Res. 2002 Mar 1;67(5):646-63 [PMID: 11891777]
  26. Mol Psychiatry. 2019 Jul;24(7):995-1012 [PMID: 30214042]
  27. Pharmaceuticals (Basel). 2013 Jun 26;6(7):788-812 [PMID: 24276315]
  28. BMC Neurosci. 2005 Nov 30;6:69 [PMID: 16318630]
  29. J Mol Neurosci. 2015 Oct;57(2):282-303 [PMID: 26319264]
  30. Nat Commun. 2018 Sep 25;9(1):3894 [PMID: 30254269]
  31. Mol Cell. 2003 Mar;11(3):709-19 [PMID: 12667453]
  32. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  33. J Neurotrauma. 2010 Aug;27(8):1529-40 [PMID: 20504161]
  34. PLoS One. 2011;6(8):e23111 [PMID: 21853077]
  35. Mol Brain. 2020 Jan 28;13(1):11 [PMID: 31992337]
  36. Acta Neuropathol. 2002 Jun;103(6):607-14 [PMID: 12012093]
  37. Brain Behav. 2020 Jun;10(6):e01610 [PMID: 32304290]
  38. Curr Genomics. 2018 Nov;19(7):522-602 [PMID: 30386171]
  39. Mol Cell Neurosci. 2015 May;66(Pt B):75-80 [PMID: 25748121]
  40. Front Cell Neurosci. 2019 Aug 08;13:307 [PMID: 31440141]
  41. BMC Genomics. 2013 Apr 25;14:282 [PMID: 23617241]
  42. Curr Protoc. 2021 Mar;1(3):e90 [PMID: 33780170]
  43. Nat Neurosci. 2017 Aug;20(8):1062-1073 [PMID: 28671691]
  44. Restor Neurol Neurosci. 2014;32(2):337-65 [PMID: 24398724]
  45. Acta Neuropathol Commun. 2018 Feb 27;6(1):17 [PMID: 29482641]
  46. J Neurotrauma. 2010 Feb;27(2):349-59 [PMID: 19903084]
  47. Neuroscience. 2009 Sep 29;163(1):1-8 [PMID: 19531374]
  48. Methods Mol Biol. 2016;1462:231-51 [PMID: 27604722]
  49. J Neurotrauma. 1999 Dec;16(12):1139-47 [PMID: 10619193]
  50. Neurochem Int. 2012 Aug;61(3):321-33 [PMID: 22579571]
  51. J Neurotrauma. 1993 Spring;10(1):57-64 [PMID: 8320732]
  52. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  53. Front Mol Neurosci. 2017 Nov 17;10:382 [PMID: 29204109]
  54. EBioMedicine. 2017 Feb;16:184-194 [PMID: 28174132]
  55. J Neurotrauma. 2010 Sep;27(9):1605-15 [PMID: 20597686]
  56. PLoS One. 2019 Apr 3;14(4):e0214741 [PMID: 30943276]
  57. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  58. J Neuroinflammation. 2020 Apr 6;17(1):104 [PMID: 32252777]
  59. J Neurotrauma. 2019 Apr 1;36(7):1018-1028 [PMID: 30261810]
  60. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10747-52 [PMID: 23754423]
  61. Int J Mol Sci. 2017 Mar 04;18(3): [PMID: 28273839]
  62. CNS Neurol Disord Drug Targets. 2010 Nov;9(5):627-35 [PMID: 20632965]
  63. J Neurotrauma. 2015 Aug 15;32(16):1200-9 [PMID: 25594545]
  64. Sci Rep. 2020 Jun 1;10(1):8811 [PMID: 32483284]
  65. Neurobiol Dis. 2013 Jun;54:1-11 [PMID: 23454194]
  66. Brain Pathol. 2004 Apr;14(2):215-22 [PMID: 15193035]
  67. Autophagy. 2018;14(7):1129-1154 [PMID: 29862881]
  68. J Neurochem. 2014 May;129(4):559-72 [PMID: 24329875]
  69. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  70. PLoS One. 2014 Aug 04;9(8):e103948 [PMID: 25089700]
  71. JAMA Neurol. 2016 Sep 1;73(9):1062-9 [PMID: 27400367]
  72. Front Behav Neurosci. 2020 Sep 30;14:160 [PMID: 33192359]
  73. Comput Math Methods Med. 2021 Apr 16;2021:5511598 [PMID: 33953790]
  74. Neurobiol Dis. 2017 Sep;105:1-14 [PMID: 28502803]
  75. Brain Nerve. 2016 Jul;68(7):849-57 [PMID: 27395469]
  76. Brain Res. 2016 Sep 1;1646:589-600 [PMID: 27380725]
  77. Brain Res. 2001 Oct 26;917(1):45-54 [PMID: 11602228]

Grants

  1. R35 GM119831/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0expressioninjurychangestimegenesmodulessignaturesTraumaticbrainTBIacuterecoveryanalysisevaluategene114days4perpointdifferentialDEGsresponseobservedassociatedrecoveredimmuneneurodegenerationpotentialcauseslastingimpactsdrivingpathologyalonganatomicalcellularbehavioraldimensionsRodentmodelsofferopportunitystudytemporalprogressiondiseaseTranscriptomicepigenomicappliedipsilateralhippocampussham = 2respectivelymoderatelateralfluidpercussion = 4enabledidentificationdynamicdifferentiallyexpressedlinkedunderlyingepigeneticcelldeathastrocytosisneurotransmissionlargely2weeksInflammationsegregatedupregulateddistincttrajectoriesfunctionsWhereasdown-regulatedtwodelayedpersistentcholesterolmetabolismamyloidbetaclearanceDifferentialparalleledhistoneH3lysineresiduetrimethylationpromotersdaypost-TBIstrongestinflammationresultsdemonstrateintegratedgenomicspre-clinicalsettingidentifystage-specificbiomarkersand/orThoughlimitedscopegeneralstrategycapturepathologicaltreatmentefficacysystemslevelTranscriptionalPathologyEvolvesTimeRatHippocampusLateralFluidPercussionBrainInjurylongitudinalrat

Similar Articles

Cited By