Moderate High-Pressure Superdormancy in Spores: Properties of Superdormant Spores and Proteins Potentially Influencing Moderate High-Pressure Germination.

Alessia I Delbrück, Yvette Tritten, Paolo Nanni, Rosa Heydenreich, Alexander Mathys
Author Information
  1. Alessia I Delbrück: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
  2. Yvette Tritten: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
  3. Paolo Nanni: Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
  4. Rosa Heydenreich: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
  5. Alexander Mathys: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.

Abstract

Resistant bacterial spores are a major concern in industrial decontamination processes. An approach known as pressure-mediated germination-inactivation strategy aims to artificially germinate spores by isostatic pressure to mitigate their resistance to inactivation processes. The successful implementation of such a germination-inactivation strategy relies on the germination of all spores. However, germination is heterogeneous, with some "superdormant" spores germinating extremely slowly or not at all. The present study investigated potential underlying reasons for moderate high-pressure (150 MPa; 37°C) superdormancy of Bacillus subtilis spores. The water and dipicolinic acid content of superdormant spores was compared with that of the initial dormant spore population. The results suggest that water and dipicolinic acid content are not major drivers of moderate high-pressure superdormancy. A proteomic analysis was used to identify proteins that were quantified at significantly different levels in superdormant spores. Subsequent validation of the germination capacity of deletion mutants revealed that the presence of protein YhcN is required for efficient moderate high-pressure germination and that proteins MinC, cse60, and SspK may also play a role, albeit a minor one. Spore-forming bacteria are ubiquitous in nature and, as a consequence, inevitably enter the food chain or other processing environments. Their presence can lead to significant spoilage or safety-related issues. Intensive treatment is usually required to inactivate them; however, this treatment harms important product quality attributes. A pressure-mediated germination-inactivation approach can balance the need for effective spore inactivation and retention of sensitive ingredients. However, superdormant spores are the bottleneck preventing the successful and safe implementation of such a strategy. An in-depth understanding of moderate high-pressure germination and the underlying causes of superdormancy is necessary to advance the development of mild high pressure-based spore control technologies. The approach used in this work allowed the identification of proteins that have not yet been associated with reduced germination at moderate high pressure. This research paves the way for further studies on the germination and superdormancy mechanisms in spores, assisting the development of mild spore inactivation strategies.

Keywords

References

  1. J Appl Microbiol. 2010 Feb;108(2):582-90 [PMID: 19674187]
  2. J Appl Microbiol. 2012 Sep;113(3):485-98 [PMID: 22574673]
  3. Future Microbiol. 2019 Mar;14:353-363 [PMID: 30855188]
  4. J Bacteriol. 2010 Jul;192(14):3608-19 [PMID: 20472791]
  5. J Bacteriol. 1997 Jan;179(2):389-98 [PMID: 8990290]
  6. Environ Microbiol. 2012 Nov;14(11):2870-90 [PMID: 22882546]
  7. J Bacteriol. 2008 Jul;190(14):4798-807 [PMID: 18469099]
  8. J Bacteriol. 2009 Mar;191(6):1787-97 [PMID: 19136594]
  9. mSphere. 2020 Aug 5;5(4): [PMID: 32759332]
  10. Appl Microbiol Biotechnol. 2008 Aug;80(1):107-14 [PMID: 18506440]
  11. Analyst. 1999 Nov;124(11):1599-604 [PMID: 10746319]
  12. Nat Protoc. 2011 May;6(5):625-39 [PMID: 21527920]
  13. Ultrason Sonochem. 2020 Jun;64:104992 [PMID: 32018137]
  14. Front Microbiol. 2020 Jan 21;10:3118 [PMID: 32038559]
  15. PLoS One. 2014 Apr 21;9(4):e95781 [PMID: 24752279]
  16. J Appl Microbiol. 2002;92(6):1105-15 [PMID: 12010551]
  17. Appl Environ Microbiol. 2014 Jan;80(1):345-53 [PMID: 24162576]
  18. J Bacteriol. 1969 Jun;98(3):1011-20 [PMID: 4977979]
  19. Appl Environ Microbiol. 2005 Oct;71(10):5879-87 [PMID: 16204500]
  20. J Bacteriol. 2010 Mar;192(5):1455-8 [PMID: 20047906]
  21. Proteomics Clin Appl. 2018 Sep;12(5):e1700169 [PMID: 29484825]
  22. J Bacteriol. 2009 Sep;191(18):5584-91 [PMID: 19592590]
  23. J Bacteriol. 2019 Apr 9;201(9): [PMID: 30782632]
  24. J Appl Microbiol. 2007 Jan;102(1):65-76 [PMID: 17184321]
  25. Trends Microbiol. 2013 Jun;21(6):296-304 [PMID: 23540831]
  26. J Appl Microbiol. 2014 Sep;117(3):711-20 [PMID: 24891141]
  27. Annu Rev Food Sci Technol. 2016;7:457-82 [PMID: 26934174]
  28. PLoS One. 2018 Aug 9;13(8):e0201979 [PMID: 30092000]
  29. Compr Rev Food Sci Food Saf. 2021 Jul;20(4):4159-4181 [PMID: 34147040]
  30. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  31. J Mol Biol. 2014 May 1;426(9):1995-2008 [PMID: 24530795]
  32. FEMS Microbiol Lett. 2017 Apr 1;364(7): [PMID: 28333204]
  33. J Appl Microbiol. 2012 Mar;112(3):526-36 [PMID: 22212253]
  34. Anal Chem. 2006 Oct 1;78(19):6936-41 [PMID: 17007517]
  35. Food Microbiol. 2011 Apr;28(2):228-35 [PMID: 21315978]
  36. Mol Microbiol. 2011 Aug;81(4):1061-77 [PMID: 21696470]
  37. Appl Environ Microbiol. 1998 Sep;64(9):3220-4 [PMID: 9726863]
  38. J Bacteriol. 2007 Feb;189(3):1090-8 [PMID: 17122337]
  39. Annu Rev Microbiol. 2017 Sep 8;71:459-477 [PMID: 28697670]
  40. J Bacteriol. 2000 May;182(9):2513-9 [PMID: 10762253]
  41. Appl Environ Microbiol. 2002 Jun;68(6):3172-5 [PMID: 12039788]
  42. J Bacteriol. 1985 Aug;163(2):735-7 [PMID: 4019413]
  43. J Bacteriol. 2014 Apr;196(7):1297-305 [PMID: 24488313]
  44. Int J Food Microbiol. 2021 Apr 2;343:109088 [PMID: 33621831]
  45. J Bacteriol. 1996 Jun;178(12):3486-95 [PMID: 8655545]
  46. Nature. 1997 Nov 20;390(6657):249-56 [PMID: 9384377]
  47. J Bacteriol. 2000 Oct;182(19):5505-12 [PMID: 10986255]
  48. J Bacteriol. 2014 May;196(9):1733-40 [PMID: 24563034]
  49. Gene. 1998 Jun 8;212(2):179-88 [PMID: 9611260]
  50. Appl Environ Microbiol. 2019 Sep 17;85(19): [PMID: 31375487]
  51. Cell Syst. 2017 Mar 22;4(3):291-305.e7 [PMID: 28189581]
  52. J Food Prot. 2011 Dec;74(12):2079-89 [PMID: 22186048]
  53. Front Microbiol. 2019 Jan 04;9:3163 [PMID: 30662433]
  54. Microbiology (Reading). 2012 Aug;158(Pt 8):1972-1981 [PMID: 22628484]
  55. Anticancer Res. 2008 Nov-Dec;28(6B):3877-83 [PMID: 19192644]
  56. Microbiology (Reading). 2002 Dec;148(Pt 12):3971-3982 [PMID: 12480901]
  57. Annu Rev Food Sci Technol. 2020 Mar 25;11:255-274 [PMID: 31905011]
  58. Appl Environ Microbiol. 2005 Jul;71(7):3556-64 [PMID: 16000762]
  59. Appl Environ Microbiol. 2015 Apr;81(8):2927-38 [PMID: 25681191]
  60. Gene. 2000 May 2;248(1-2):169-81 [PMID: 10806362]
  61. J Bacteriol. 2012 May;194(9):2221-7 [PMID: 22343299]
  62. J Proteome Res. 2016 Feb 5;15(2):585-94 [PMID: 26731423]

MeSH Term

Bacillus
Bacillus subtilis
Bacterial Proteins
Proteomics
Spores, Bacterial

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0sporesgerminationmoderatehigh-pressuresporesuperdormancysuperdormantapproachgermination-inactivationstrategyinactivationproteinsmajorprocessespressure-mediatedpressuresuccessfulimplementationHoweverunderlyingBacilluswaterdipicolinicacidcontentusedpresencerequiredcantreatmentdevelopmentmildhighModerateHigh-PressureResistantbacterialconcernindustrialdecontaminationknownaimsartificiallygerminateisostaticmitigateresistancereliesheterogeneous"superdormant"germinatingextremelyslowlypresentstudyinvestigatedpotentialreasons150 MPa37°CsubtiliscomparedinitialdormantpopulationresultssuggestdriversproteomicanalysisidentifyquantifiedsignificantlydifferentlevelsSubsequentvalidationcapacitydeletionmutantsrevealedproteinYhcNefficientMinCcse60SspKmayalsoplayrolealbeitminoroneSpore-formingbacteriaubiquitousnatureconsequenceinevitablyenterfoodchainprocessingenvironmentsleadsignificantspoilagesafety-relatedissuesIntensiveusuallyinactivatehoweverharmsimportantproductqualityattributesbalanceneedeffectiveretentionsensitiveingredientsbottleneckpreventingsafein-depthunderstandingcausesnecessaryadvancepressure-basedcontroltechnologiesworkallowedidentificationyetassociatedreducedresearchpaveswaystudiesmechanismsassistingstrategiesSuperdormancySpores:PropertiesSuperdormantSporesProteinsPotentiallyInfluencingGermination

Similar Articles

Cited By