CRISPR/Cas9-mediated generation of biallelic F0 anemonefish (Amphiprion ocellaris) mutants.

Laurie J Mitchell, Valerio Tettamanti, Justin S Rhodes, N Justin Marshall, Karen L Cheney, Fabio Cortesi
Author Information
  1. Laurie J Mitchell: School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia. ORCID
  2. Valerio Tettamanti: Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
  3. Justin S Rhodes: Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, Urbana, IL, United States of America.
  4. N Justin Marshall: Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
  5. Karen L Cheney: School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
  6. Fabio Cortesi: Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.

Abstract

Genomic manipulation is a useful approach for elucidating the molecular pathways underlying aspects of development, physiology, and behaviour. However, a lack of gene-editing tools appropriated for use in reef fishes has meant the genetic underpinnings for many of their unique traits remain to be investigated. One iconic group of reef fishes ideal for applying this technique are anemonefishes (Amphiprioninae) as they are widely studied for their symbiosis with anemones, sequential hermaphroditism, complex social hierarchies, skin pattern development, and vision, and are raised relatively easily in aquaria. In this study, we developed a gene-editing protocol for applying the CRISPR/Cas9 system in the false clown anemonefish, Amphiprion ocellaris. Microinjection of zygotes was used to demonstrate the successful use of our CRISPR/Cas9 approach at two separate target sites: the rhodopsin-like 2B opsin encoding gene (RH2B) involved in vision, and Tyrosinase-producing gene (tyr) involved in the production of melanin. Analysis of the sequenced target gene regions in A. ocellaris embryos showed that uptake was as high as 73.3% of injected embryos. Further analysis of the subcloned mutant gene sequences combined with amplicon shotgun sequencing revealed that our approach had a 75% to 100% efficiency in producing biallelic mutations in F0 A. ocellaris embryos. Moreover, we clearly show a loss-of-function in tyr mutant embryos which exhibited typical hypomelanistic phenotypes. This protocol is intended as a useful starting point to further explore the potential application of CRISPR/Cas9 in A. ocellaris, as a platform for studying gene function in anemonefishes and other reef fishes.

References

  1. Methods. 2017 May 15;121-122:77-85 [PMID: 28300641]
  2. Proc Biol Sci. 2018 Apr 11;285(1876): [PMID: 29643214]
  3. Congenit Anom (Kyoto). 2014 Feb;54(1):8-11 [PMID: 24279334]
  4. Trends Genet. 2016 Dec;32(12):815-827 [PMID: 27836208]
  5. Sci Rep. 2019 Nov 11;9(1):16459 [PMID: 31712572]
  6. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13904-9 [PMID: 23918387]
  7. Horm Behav. 2019 Jun;112:65-76 [PMID: 30959023]
  8. Dev Growth Differ. 2021 Nov 16;: [PMID: 34786704]
  9. Sci Rep. 2016 Oct 17;6:35461 [PMID: 27748421]
  10. PLoS One. 2015 May 26;10(5):e0128319 [PMID: 26010089]
  11. BMC Biol. 2018 Sep 5;16(1):90 [PMID: 30180844]
  12. Development. 2016 Jun 1;143(11):2025-37 [PMID: 27130213]
  13. Vision Res. 2008 Sep;48(20):2022-41 [PMID: 18590925]
  14. Mol Ecol Resour. 2019 May;19(3):570-585 [PMID: 30203521]
  15. Mol Cells. 2016 Oct;39(10):750-755 [PMID: 27802373]
  16. Evodevo. 2020 Oct 7;11:20 [PMID: 33042514]
  17. Nat Commun. 2017 Oct 10;8(1):716 [PMID: 28993608]
  18. Gigascience. 2018 Mar 1;7(3):1-6 [PMID: 29342277]
  19. Biol Open. 2014 Apr 11;3(5):362-71 [PMID: 24728957]
  20. Aquat Toxicol. 2015 Jan;158:192-201 [PMID: 25481785]
  21. Front Genet. 2020 Aug 12;11:801 [PMID: 32903371]
  22. Nat Biotechnol. 2013 Sep;31(9):827-32 [PMID: 23873081]
  23. Behav Processes. 2018 May;150:25-28 [PMID: 29447852]
  24. Genetics. 2014 Jun;197(2):591-9 [PMID: 24709635]
  25. Horm Behav. 2017 Apr;90:113-119 [PMID: 28288796]
  26. Biol Reprod. 2014 Dec;91(6):136 [PMID: 25320148]
  27. Genome Biol Evol. 2021 Oct 1;13(10): [PMID: 34375382]
  28. Nature. 2003 Jul 10;424(6945):145-6 [PMID: 12853944]
  29. Oecologia. 2006 Aug;149(2):362-72 [PMID: 16794835]
  30. J Exp Zool B Mol Dev Evol. 2021 Jun;336(4):376-385 [PMID: 33539680]
  31. PLoS One. 2014 Sep 25;9(9):e108622 [PMID: 25254960]
  32. Pigment Cell Melanoma Res. 2019 May;32(3):391-402 [PMID: 30633441]
  33. Science. 2000 Aug 4;289(5480):739-45 [PMID: 10926528]
  34. Horm Behav. 2018 Jul;103:62-70 [PMID: 29928890]
  35. Cell. 2015 Feb 26;160(5):1013-1026 [PMID: 25684364]
  36. G3 (Bethesda). 2018 Mar 2;8(3):823-831 [PMID: 29295818]
  37. Nat Protoc. 2016 Jan;11(1):118-33 [PMID: 26678082]
  38. BMC Genet. 2017 Feb 6;18(1):10 [PMID: 28166717]
  39. Proc Biol Sci. 2016 May 25;283(1831): [PMID: 27226472]
  40. Toxicon. 2018 Oct;153:58-61 [PMID: 30170168]
  41. Cell. 2014 Jun 5;157(6):1262-1278 [PMID: 24906146]
  42. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  43. Dev Dyn. 2019 Jul;248(7):545-568 [PMID: 31070818]
  44. Comp Biochem Physiol A Mol Integr Physiol. 2017 Sep;211:26-33 [PMID: 28599948]

MeSH Term

Alleles
Animals
CRISPR-Cas Systems
Fishes
Gene Editing
Gene Frequency
Genome
Genomics
Zygote

Word Cloud

Created with Highcharts 10.0.0ocellarisgeneembryosapproachreeffishesCRISPR/Cas9usefuldevelopmentgene-editinguseapplyinganemonefishesvisionprotocolanemonefishAmphipriontargetinvolvedtyrmutantbiallelicF0GenomicmanipulationelucidatingmolecularpathwaysunderlyingaspectsphysiologybehaviourHoweverlacktoolsappropriatedmeantgeneticunderpinningsmanyuniquetraitsremaininvestigatedOneiconicgroupidealtechniqueAmphiprioninaewidelystudiedsymbiosisanemonessequentialhermaphroditismcomplexsocialhierarchiesskinpatternraisedrelativelyeasilyaquariastudydevelopedsystemfalseclownMicroinjectionzygotesuseddemonstratesuccessfultwoseparatesites:rhodopsin-like2BopsinencodingRH2BTyrosinase-producingproductionmelaninAnalysissequencedregionsshoweduptakehigh733%injectedanalysissubclonedsequencescombinedampliconshotgunsequencingrevealed75%100%efficiencyproducingmutationsMoreoverclearlyshowloss-of-functionexhibitedtypicalhypomelanisticphenotypesintendedstartingpointexplorepotentialapplicationplatformstudyingfunctionCRISPR/Cas9-mediatedgenerationmutants

Similar Articles

Cited By