Can Machine Learning from Real-World Data Support Drug Treatment Decisions? A Prediction Modeling Case for Direct Oral Anticoagulants.

Andreas D Meid, Lucas Wirbka, ARMIN Study Group, Andreas Groll, Walter E Haefeli
Author Information
  1. Andreas D Meid: Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany. ORCID
  2. Lucas Wirbka: Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.
  3. Andreas Groll: Department of Statistics, TU Dortmund University, Dortmund, Germany.
  4. Walter E Haefeli: Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany. ORCID

Abstract

BACKGROUND: Decision making for the "best" treatment is particularly challenging in situations in which individual patient response to drugs can largely differ from average treatment effects. By estimating individual treatment effects (ITEs), we aimed to demonstrate how strokes, major bleeding events, and a composite of both could be reduced by model-assisted recommendations for a particular direct oral anticoagulant (DOAC).
METHODS: In German claims data for the calendar years 2014-2018, we selected 29 901 new users of the DOACs rivaroxaban and apixaban. Random forests considered binary events within 1 y to estimate ITEs under each DOAC according to the X-learner algorithm with 29 potential effect modifiers; treatment recommendations were based on these estimated ITEs. Model performance was evaluated by the c-for-benefit statistics, absolute risk reduction (ARR), and absolute risk difference (ARD) by trial emulation.
RESULTS: A significant proportion of patients would be recommended a different treatment option than they actually received. The stroke model significantly discriminated patients for higher benefit and thus indicated improved decisions by reduced outcomes (c-for-benefit: 0.56; 95% confidence interval [0.52; 0.60]). In the group with apixaban recommendation, the model also improved the composite endpoint (ARR: 1.69 % [0.39; 2.97]). In trial emulations, model-assisted recommendations significantly reduced the composite event rate (ARD: -0.78 % [-1.40; -0.03]).
CONCLUSIONS: If prescribers are undecided about the potential benefits of different treatment options, ITEs can support decision making, especially if evidence is inconclusive, risk-benefit profiles of therapeutic alternatives differ significantly, and the patients' complexity deviates from "typical" study populations. In the exemplary case for DOACs and potentially in other situations, the significant impact could also become practically relevant if recommendations were available in an automated way as part of decision making.HighlightsIt was possible to calculate individual treatment effects (ITEs) from routine claims data for rivaroxaban and apixaban, and the characteristics between the groups with recommendation for one or the other option differed significantly.ITEs resulted in recommendations that were significantly superior to usual (observed) treatment allocations in terms of absolute risk reduction, both separately for stroke and in the composite endpoint of stroke and major bleeding.When similar patients from routine data were selected (precision cohorts) for patients with a strong recommendation for one option or the other, those similar patients under the respective recommendation showed a significantly better prognosis compared with the alternative option.Many steps may still be needed on the way to clinical practice, but the principle of decision support developed from routine data may point the way toward future decision-making processes.

Keywords

References

  1. Clin Pharmacol Ther. 2021 Mar;109(3):772-781 [PMID: 32978779]
  2. J Clin Epidemiol. 2018 Nov;103:131-133 [PMID: 30063954]
  3. Eur J Intern Med. 2019 Apr;62:9-16 [PMID: 30635146]
  4. J Manag Care Spec Pharm. 2018 Nov;24(11):1116-1127 [PMID: 30212268]
  5. Clin Ther. 2017 Jul;39(7):1456-1478.e36 [PMID: 28668628]
  6. PLoS One. 2020 May 29;15(5):e0233686 [PMID: 32470056]
  7. J Clin Epidemiol. 2015 Feb;68(2):134-43 [PMID: 25579640]
  8. Epidemiology. 2020 May;31(3):359-364 [PMID: 32091429]
  9. Biometrics. 2017 Dec;73(4):1199-1209 [PMID: 28211943]
  10. Med Decis Making. 2021 Oct;41(7):821-833 [PMID: 33660551]
  11. Patient Prefer Adherence. 2021 Sep 24;15:2209-2220 [PMID: 34594102]
  12. J Clin Epidemiol. 2018 Feb;94:59-68 [PMID: 29132832]
  13. Stat Med. 2018 Oct 15;37(23):3309-3324 [PMID: 29862536]
  14. Med Decis Making. 2021 Jan;41(1):74-88 [PMID: 33106087]
  15. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165 [PMID: 30770453]
  16. JAMA. 2007 Sep 12;298(10):1209-12 [PMID: 17848656]
  17. Med Care. 2009 Jun;47(6):626-33 [PMID: 19433995]
  18. Circ J. 2019 Apr 25;83(5):991-999 [PMID: 30918237]
  19. Stroke. 2017 Aug;48(8):2142-2149 [PMID: 28655814]
  20. Europace. 2017 Jun 1;19(6):937-947 [PMID: 27209573]
  21. J Am Med Inform Assoc. 2019 Oct 1;26(10):977-988 [PMID: 31220274]
  22. Ann Intern Med. 2020 May 5;172(9):610-616 [PMID: 32311741]
  23. Clin Epidemiol. 2020 Nov 02;12:1223-1234 [PMID: 33173350]
  24. Front Pharmacol. 2019 Feb 19;10:113 [PMID: 30837879]
  25. Epidemiology. 2020 Sep;31(5):e42-e44 [PMID: 32282438]
  26. Stroke. 2015 May;46(5):1314-20 [PMID: 25851767]
  27. Am J Med. 2019 May;132(5):596-604.e11 [PMID: 30639551]
  28. MMWR Morb Mortal Wkly Rep. 2003 Feb 21;52(7):128, 130-1 [PMID: 12617537]
  29. Ann Intern Med. 2020 May 19;172(10):688-692 [PMID: 32311739]
  30. J Manag Care Spec Pharm. 2018 Sep;24(9):911-920 [PMID: 30156450]
  31. J Clin Epidemiol. 2020 Oct;126:17-25 [PMID: 32531265]
  32. Med Care. 2005 Nov;43(11):1130-9 [PMID: 16224307]
  33. PLoS One. 2019 Aug 8;14(8):e0219728 [PMID: 31393900]
  34. Circ Cardiovasc Qual Outcomes. 2019 Mar;12(3):e005010 [PMID: 30857410]
  35. Biometrics. 2018 Jun;74(2):557-565 [PMID: 29073325]
  36. Ann Intern Med. 2020 Jan 7;172(1):35-45 [PMID: 31711134]
  37. BMJ. 2017 Feb 10;356:j510 [PMID: 28188243]
  38. Stat Med. 2021 Sep 20;40(21):4691-4713 [PMID: 34114252]
  39. BMC Med Res Methodol. 2014 Dec 22;14:137 [PMID: 25532820]
  40. Chest. 2010 Feb;137(2):263-72 [PMID: 19762550]
  41. Stroke. 2017 Nov;48(11):3040-3048 [PMID: 28974629]
  42. J Intern Med. 2018 Jan;283(1):45-55 [PMID: 28861925]
  43. J Am Med Inform Assoc. 2020 Nov 1;27(11):1808-1812 [PMID: 32885823]
  44. Stroke. 2018 Dec;49(12):2933-2944 [PMID: 30571400]
  45. Cardiol Clin. 2009 Feb;27(1):13-24, vii [PMID: 19111760]
  46. PLoS One. 2021 Mar 3;16(3):e0246691 [PMID: 33657116]
  47. J Biomed Inform. 2016 Jun;61:119-31 [PMID: 26992568]
  48. Med Decis Making. 2011 Mar-Apr;31(2):354-66 [PMID: 20671211]
  49. Med Decis Making. 2021 Apr;41(3):275-291 [PMID: 33588616]
  50. J Am Heart Assoc. 2016 Jun 13;5(6): [PMID: 27412905]
  51. J Am Heart Assoc. 2020 Jul 7;9(13):e017559 [PMID: 32538234]
  52. Lancet. 2014 Mar 15;383(9921):955-62 [PMID: 24315724]
  53. Int J Epidemiol. 2016 Dec 1;45(6):2184-2193 [PMID: 27864403]

MeSH Term

Administration, Oral
Anticoagulants
Atrial Fibrillation
Dabigatran
Hemorrhage
Humans
Machine Learning
Retrospective Studies
Rivaroxaban
Stroke

Chemicals

Anticoagulants
Rivaroxaban
Dabigatran

Word Cloud

Created with Highcharts 10.0.0treatmentITEssignificantlyrecommendationsdatapatientseffectscompositeoptionrecommendationdecisionmakingindividualreducedclaimsapixabanabsoluteriskstrokesupportwayroutinesituationscandiffermajorbleedingeventsmodel-assisteddirectoralDOACselected29DOACsrivaroxaban1potentialreductiontrialsignificantdifferentmodelimproved0[0alsoendpoint%-0onesimilarmayclinicalBACKGROUND:Decision"best"particularlychallengingpatientresponsedrugslargelyaverageestimatingaimeddemonstratestrokesparticularanticoagulantMETHODS:Germancalendaryears2014-2018901newusersRandomforestsconsideredbinarywithinyestimateaccordingX-learneralgorithmeffectmodifiersbasedestimatedModelperformanceevaluatedc-for-benefitstatisticsARRdifferenceARDemulationRESULTS:proportionrecommendedactuallyreceiveddiscriminatedhigherbenefitthusindicateddecisionsoutcomesc-for-benefit:5695%confidenceinterval5260]groupARR:6939297]emulationseventrateARD:78[-14003]CONCLUSIONS:prescribersundecidedbenefitsoptionsespeciallyevidenceinconclusiverisk-benefitprofilestherapeuticalternativespatients'complexitydeviates"typical"studypopulationsexemplarycasepotentiallyimpactbecomepracticallyrelevantavailableautomatedpartHighlightsItpossiblecalculatecharacteristicsgroupsdifferedresultedsuperiorusualobservedallocationstermsseparatelyWhenprecisioncohortsstrongrespectiveshowedbetterprognosiscomparedalternativeManystepsstillneededpracticeprincipledevelopedpointtowardfuturedecision-makingprocessesCanMachineLearningReal-WorldDataSupportDrugTreatmentDecisions?PredictionModelingCaseDirectOralAnticoagulantssystemanticoagulantsheterogeneousmachine-learningpersonalizedmedicine

Similar Articles

Cited By