Biological laterality and peripheral nerve DTI metrics.

Scott A Holmes, Steven J Staffa, Anastasia Karapanagou, Natalia Lopez, Victoria Karian, Ronald Borra, David Zurakowski, Alyssa Lebel, David Borsook
Author Information
  1. Scott A Holmes: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America.
  2. Steven J Staffa: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America. ORCID
  3. Anastasia Karapanagou: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America. ORCID
  4. Natalia Lopez: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America.
  5. Victoria Karian: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America.
  6. Ronald Borra: Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
  7. David Zurakowski: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America. ORCID
  8. Alyssa Lebel: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America.
  9. David Borsook: Center for Pain and the Brain, Boston Children's Hospital, Boston, Massachusetts, United States of America.

Abstract

BACKGROUND AND PURPOSE: Clinical comparisons do not usually take laterality into account and thus may report erroneous or misleading data. The concept of laterality, well evaluated in brain and motor systems, may also apply at the level of peripheral nerves. Therefore, we sought to evaluate the extent to which we could observe an effect of laterality in MRI-collected white matter indices of the sciatic nerve and its two branches (tibial and fibular).
MATERIALS AND METHODS: We enrolled 17 healthy persons and performed peripheral nerve diffusion weighted imaging (DWI) and magnetization transfer imaging (MTI) of the sciatic, tibial and fibular nerve. Participants were scanned bilaterally, and findings were divided into ipsilateral and contralateral nerve fibers relative to self-reporting of hand dominance. Generalized estimating equation modeling was used to evaluate nerve fiber differences between ipsilateral and contralateral legs while controlling for confounding variables. All findings controlled for age, sex and number of scans performed.
RESULTS: A main effect of laterality was found in radial, axial, and mean diffusivity for the tibial nerve. Axial diffusivity was found to be lateralized in the sciatic nerve. When evaluating mean MTR, a main effect of laterality was found for each nerve division. A main effect of sex was found in the tibial and fibular nerve fiber bundles.
CONCLUSION: For the evaluation of nerve measures using DWI and MTI, in either healthy or disease states, consideration of underlying biological metrics of laterality in peripheral nerve fiber characteristics need to considered for data analysis. Integrating knowledge regarding biological laterality of peripheral nerve microstructure may be applied to improve how we diagnosis pain disorders, how we track patients' recovery and how we forecast pain chronification.

References

  1. Front Neurol. 2018 Feb 27;9:92 [PMID: 29535676]
  2. Int J Neurosci. 1993 Nov;73(1-2):85-91 [PMID: 8132422]
  3. Neurobiol Pain. 2019 Dec 04;7:100038 [PMID: 31890990]
  4. Neuroimage. 2003 Nov;20(3):1714-22 [PMID: 14642481]
  5. J Neurol Neurosurg Psychiatry. 2005 Jun;76 Suppl 2:ii23-31 [PMID: 15961865]
  6. Arch Neurol. 1977 Oct;34(10):585-9 [PMID: 907529]
  7. PLoS One. 2015 Jun 26;10(6):e0130833 [PMID: 26114630]
  8. Invest Radiol. 2018 Jul;53(7):397-402 [PMID: 29470194]
  9. J Orthop Surg Res. 2017 Nov 29;12(1):184 [PMID: 29187253]
  10. Behav Brain Res. 2015 Jul 15;288:11-9 [PMID: 25882724]
  11. Curr Drug Abuse Rev. 2016;9(1):1-18 [PMID: 26674074]
  12. Lancet Diabetes Endocrinol. 2019 Dec;7(12):938-948 [PMID: 31624024]
  13. Neuroradiology. 2011 Dec;53(12):955-60 [PMID: 21318578]
  14. Neurosci Lett. 1985 Jan 7;53(1):15-20 [PMID: 3991047]
  15. Arch Neurol. 2009 Mar;66(3):375-81 [PMID: 19273757]
  16. J Magn Reson Imaging. 2018 May;47(5):1171-1189 [PMID: 29083521]
  17. Skeletal Radiol. 2017 Mar;46(3):309-314 [PMID: 28028573]
  18. Aging Cell. 2019 Feb;18(1):e12857 [PMID: 30578611]
  19. Prog Brain Res. 2018;238:145-178 [PMID: 30097191]
  20. Res Dev Disabil. 2013 May;34(5):1623-9 [PMID: 23475012]
  21. Environ Health Prev Med. 2001 Apr;6(1):33-40 [PMID: 21432235]
  22. Int J Basic Appl Physiol. 2012;1(1):19-21 [PMID: 25346929]
  23. Indian J Physiol Pharmacol. 2009 Jul-Sep;53(3):279-82 [PMID: 20329377]
  24. Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5417-23 [PMID: 26284545]
  25. Biol Sex Differ. 2018 Jun 27;9(1):28 [PMID: 29950175]
  26. J Strength Cond Res. 2014 Jan;28(1):82-6 [PMID: 23524366]
  27. Clin Neuroradiol. 2020 Dec;30(4):671-677 [PMID: 31486885]
  28. Indian J Physiol Pharmacol. 2008 Apr-Jun;52(2):189-92 [PMID: 19130864]
  29. J Magn Reson Imaging. 2016 Apr;43(4):962-9 [PMID: 26397723]
  30. Otol Neurotol. 2016 Apr;37(4):388-93 [PMID: 26905823]
  31. J Magn Reson Imaging. 2017 Mar;45(3):855-862 [PMID: 27448779]
  32. Front Pharmacol. 2017 Feb 24;8:86 [PMID: 28286483]
  33. J Strength Cond Res. 2010 Oct;24(10):2816-20 [PMID: 20885200]
  34. J Mot Behav. 1989 Jun;21(2):113-21 [PMID: 15132940]
  35. Neuroscience. 2021 Feb 1;454:3-14 [PMID: 32027996]
  36. J Neurotrauma. 2017 Jul 1;34(13):2109-2118 [PMID: 28152648]
  37. Insights Imaging. 2013 Jun;4(3):287-99 [PMID: 23709403]
  38. J Surg Res. 2019 Oct;242:207-213 [PMID: 31085369]
  39. Eur Radiol. 2018 May;28(5):1801-1808 [PMID: 29230526]
  40. Clin Neurophysiol. 2016 Apr;127(4):1921-2 [PMID: 26971471]
  41. Front Psychol. 2014 Oct 08;5:1092 [PMID: 25339923]

Grants

  1. R01 HD083133/NICHD NIH HHS

MeSH Term

Adolescent
Diffusion Tensor Imaging
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Nerve Fibers
Peripheral Nerves
Young Adult

Word Cloud

Created with Highcharts 10.0.0nervelateralityperipheraleffecttibialfoundmaysciaticfibularfibermainANDdataevaluatehealthyperformedimagingDWIMTIfindingsipsilateralcontralateralsexmeandiffusivitybiologicalmetricspainBACKGROUNDPURPOSE:ClinicalcomparisonsusuallytakeaccountthusreporterroneousmisleadingconceptwellevaluatedbrainmotorsystemsalsoapplylevelnervesThereforesoughtextentobserveMRI-collectedwhitematterindicestwobranchesMATERIALSMETHODS:enrolled17personsdiffusionweightedmagnetizationtransferParticipantsscannedbilaterallydividedfibersrelativeself-reportinghanddominanceGeneralizedestimatingequationmodelinguseddifferenceslegscontrollingconfoundingvariablescontrolledagenumberscansRESULTS:radialaxialAxiallateralizedevaluatingMTRdivisionbundlesCONCLUSION:evaluationmeasuresusingeitherdiseasestatesconsiderationunderlyingcharacteristicsneedconsideredanalysisIntegratingknowledgeregardingmicrostructureappliedimprovediagnosisdisorderstrackpatients'recoveryforecastchronificationBiologicalDTI

Similar Articles

Cited By (3)