Early Myeloid Derived Suppressor Cells (eMDSCs) Are Associated With High Donor Myeloid Chimerism Following Haploidentical HSCT for Sickle Cell Disease.

Deepali K Bhat, Purevdorj B Olkhanud, Arunakumar Gangaplara, Fayaz Seifuddin, Mehdi Pirooznia, Angélique Biancotto, Giovanna Fantoni, Corinne Pittman, Berline Francis, Pradeep K Dagur, Ankit Saxena, J Philip McCoy, Ruth M Pfeiffer, Courtney D Fitzhugh
Author Information
  1. Deepali K Bhat: Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
  2. Purevdorj B Olkhanud: Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
  3. Arunakumar Gangaplara: Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
  4. Fayaz Seifuddin: Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
  5. Mehdi Pirooznia: Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
  6. Angélique Biancotto: Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States.
  7. Giovanna Fantoni: Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States.
  8. Corinne Pittman: Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
  9. Berline Francis: Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
  10. Pradeep K Dagur: Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States.
  11. Ankit Saxena: Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States.
  12. J Philip McCoy: Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States.
  13. Ruth M Pfeiffer: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States.
  14. Courtney D Fitzhugh: Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.

Abstract

Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a widely available curative option for patients with sickle cell disease (SCD). Our original non-myeloablative haplo-HSCT trial employing post-transplant (PT) cyclophosphamide had a low incidence of GVHD but had high rejection rates. Here, we aimed to evaluate immune reconstitution following haplo-HSCT and identify cytokines and cells associated with graft rejection/engraftment. 50 cytokines and 10 immune cell subsets were screened using multiplex-ELISA and flow cytometry, respectively, at baseline and PT-Days 30, 60, 100, and 180. We observed the most significant differences in cytokine levels between the engrafted and rejected groups at PT-Day 60, corresponding with clinical findings of secondary graft rejection. Of the 44 cytokines evaluated, plasma concentrations of 19 cytokines were different between the two groups at PT-Day 60. Factor analysis suggested two independent factors. The first factor (IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, and TGFb1 contributed significantly) was strongly associated with engraftment with OR = 2.7 (95%CI of 1.4 to 5.4), whereas the second factor (GROa and IL-18 contributed significantly) was not significantly associated with engraftment. Sufficient donor myeloid chimerism (DMC) is critical for the success of HSCT; here, we evaluated immune cells among high (H) DMC (DMC≥20%) and low (L) DMC (DMC<20%) groups along with engrafted and rejected groups. We found that early myeloid-derived suppressor cell (eMDSC) frequencies were elevated in engrafted patients and patients with HDMC at PT-Day 30 (P< 0.04 & P< 0.003, respectively). 9 of 20 patients were evaluated for the source of eMDSCs. The HDMC group had high mixed chimeric eMDSCs as compared to the LDMC group (P< 0.00001). We found a positive correlation between the frequencies of eMDSCs and Tregs at PT-Day 100 (r=0.72, P <0.0007); eMDSCs at BSL and Tregs at PT-Day 100 (r=0.63, P <0.004). Of 10 immune regulatory cells and 50 cytokines, we observed mixed chimeric eMDSCs and IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, TGFb1 as potential hits which could serve as prognostic markers in predicting allograft outcome towards engraftment following haploidentical HSCT employing post-transplant cyclophosphamide. The current findings need to be replicated and further explored in a larger cohort.

Keywords

Associated Data

ClinicalTrials.gov | NCT00977691

References

  1. Nat Med. 2007 Jul;13(7):828-35 [PMID: 17603493]
  2. N Engl J Med. 2013 May 9;368(19):1850-2 [PMID: 23656665]
  3. Cancer Immunol Immunother. 2016 Feb;65(2):161-9 [PMID: 26728481]
  4. Immunity. 2004 Feb;20(2):121-31 [PMID: 14975235]
  5. Science. 2008 Oct 10;322(5899):271-5 [PMID: 18845758]
  6. J Immunol Res. 2016;2016:4986797 [PMID: 27868073]
  7. J Cell Physiol. 2018 Sep;233(9):6425-6440 [PMID: 29319160]
  8. Immunity. 2009 May;30(5):636-45 [PMID: 19464986]
  9. Nat Rev Nephrol. 2014 Apr;10(4):215-25 [PMID: 24445740]
  10. Transplantation. 2012 Jan 15;93(1):1-10 [PMID: 22138818]
  11. Am J Transplant. 2013 Dec;13(12):3123-31 [PMID: 24103111]
  12. Immunity. 2008 Apr;28(4):546-58 [PMID: 18387831]
  13. Nat Rev Immunol. 2015 Jul;15(7):441-51 [PMID: 26065586]
  14. Blood. 2016 Aug 11;128(6):794-804 [PMID: 27338097]
  15. Blood Adv. 2017 Apr 19;1(11):652-661 [PMID: 29296707]
  16. J Clin Invest. 2015 Sep;125(9):3356-64 [PMID: 26168215]
  17. Cancer Res. 2006 Jan 15;66(2):1123-31 [PMID: 16424049]
  18. J Exp Med. 2007 Jun 11;204(6):1463-74 [PMID: 17548519]
  19. J Immunol. 2007 Jun 15;178(12):7503-9 [PMID: 17548582]
  20. Int Rev Immunol. 1998;16(5-6):651-82 [PMID: 9646181]
  21. Biol Blood Marrow Transplant. 2016 Mar;22(3):441-8 [PMID: 26348889]
  22. Blood. 2018 May 17;131(20):2193-2204 [PMID: 29622549]
  23. J Immunol. 1995 Mar 15;154(6):2668-77 [PMID: 7533180]
  24. J Immunol. 2010 Aug 15;185(4):2273-84 [PMID: 20644162]
  25. Sci Rep. 2020 Aug 28;10(1):14249 [PMID: 32859934]
  26. Nat Rev Immunol. 2009 Mar;9(3):162-74 [PMID: 19197294]
  27. Immunity. 2010 Jan 29;32(1):129-40 [PMID: 20079667]
  28. Methods Mol Biol. 2018;1678:151-166 [PMID: 29071680]
  29. Front Immunol. 2018 May 15;9:1048 [PMID: 29868011]
  30. Hemoglobin. 2016 Sep;40(5):295-299 [PMID: 27643740]
  31. Blood. 2017 Mar 16;129(11):1548-1556 [PMID: 27965196]
  32. Nat Rev Immunol. 2010 Jul;10(7):490-500 [PMID: 20559327]
  33. Eur J Immunol. 2009 Oct;39(10):2865-76 [PMID: 19637228]
  34. Am J Transplant. 2014 Nov;14(11):2467-77 [PMID: 25311657]
  35. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4793-8 [PMID: 19273860]
  36. Blood. 2017 Oct 26;130(17):1946-1948 [PMID: 28887325]
  37. J Immunol Methods. 2011 Jan 5;363(2):245-61 [PMID: 20600079]
  38. Methods Mol Biol. 2019;2032:129-140 [PMID: 31522417]
  39. Nat Protoc. 2006;1(3):1522-30 [PMID: 17406444]
  40. J Clin Invest. 2010 Jul;120(7):2486-96 [PMID: 20551515]
  41. J Exp Med. 2000 Jul 17;192(2):295-302 [PMID: 10899916]
  42. J Hematol Oncol. 2019 Mar 18;12(1):31 [PMID: 30885244]
  43. Am J Hematol. 2000 Apr;63(4):205-11 [PMID: 10706765]
  44. Lancet. 2013 Jan 12;381(9861):142-51 [PMID: 23103089]
  45. N Engl J Med. 1996 Aug 8;335(6):369-76 [PMID: 8663884]
  46. J Immunol. 2008 Jun 15;180(12):7898-906 [PMID: 18523253]
  47. Nat Med. 2013 Jun;19(6):739-46 [PMID: 23624599]
  48. Immunol Res. 2012 Dec;54(1-3):275-85 [PMID: 22535241]
  49. Haematologica. 2011 Jan;96(1):128-33 [PMID: 20935000]
  50. JAMA. 2014 Jul 2;312(1):48-56 [PMID: 25058217]
  51. Blood Cells Mol Dis. 2018 Mar;69:107-112 [PMID: 29137845]
  52. Biol Blood Marrow Transplant. 2001;7(12):665-73 [PMID: 11787529]
  53. Trends Immunol. 2016 Mar;37(3):208-220 [PMID: 26858199]
  54. Oncotarget. 2016 Jan 12;7(2):1168-84 [PMID: 26700461]
  55. N Engl J Med. 2013 Aug 8;369(6):529-39 [PMID: 23924003]
  56. Curr Stem Cell Res Ther. 2012 May;7(3):229-39 [PMID: 22023620]
  57. Nat Commun. 2016 Jul 06;7:12150 [PMID: 27381735]
  58. J Surg Res. 2012 Jul;176(1):293-300 [PMID: 21962809]
  59. Bone Marrow Transplant. 2017 Jun;52(6):938-940 [PMID: 28436975]
  60. Transplantation. 2012 Feb 15;93(3):272-82 [PMID: 22179405]
  61. Gastroenterology. 2008 Sep;135(3):871-81, 881.e1-5 [PMID: 18674538]
  62. Clin Exp Immunol. 2017 Aug;189(2):158-170 [PMID: 28518214]
  63. Lancet Haematol. 2015 Jan;2(1):e21-9 [PMID: 26687425]
  64. Science. 2011 Apr 29;332(6029):600-3 [PMID: 21474713]
  65. J Exp Med. 2000 Jul 17;192(2):303-10 [PMID: 10899917]
  66. Biol Blood Marrow Transplant. 2017 Dec;23(12):2178-2183 [PMID: 28882446]
  67. Am J Hematol. 2010 Jan;85(1):36-40 [PMID: 20029950]
  68. Semin Hematol. 1991 Jul;28(3):213-9 [PMID: 1887247]
  69. Blood. 2010 Aug 12;116(6):935-44 [PMID: 20448110]
  70. Am J Prev Med. 2010 Apr;38(4 Suppl):S512-21 [PMID: 20331952]
  71. Annu Rev Immunol. 2010;28:445-89 [PMID: 20192806]
  72. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8635-40 [PMID: 19439651]

MeSH Term

Adult
Anemia, Sickle Cell
Chimerism
Cyclophosphamide
Cytokines
Graft Rejection
Graft Survival
Hematopoietic Stem Cell Transplantation
Humans
Immune Reconstitution
Immunosuppressive Agents
Myeloid-Derived Suppressor Cells
Prognosis
Transplantation Chimera
Transplantation Conditioning
Transplantation, Haploidentical
Treatment Outcome

Chemicals

Cytokines
Immunosuppressive Agents
Cyclophosphamide

Word Cloud

Created with Highcharts 10.0.0eMDSCscellcytokinesPT-DaypatientsimmunecellsgroupsHSCThaplo-HSCThighassociated60100engraftedevaluatedIL-10significantlyengraftmentmyeloidDMCP<0TregsHaploidenticalsicklediseaseemployingpost-transplantcyclophosphamidelowrejectionfollowinggraft5010respectively30observedrejectedfindingstwofactorIL-17AIL-7G-CSFIL-2MIP-1aVEGFTGFb1contributed4donorchimerismfoundearlysuppressorfrequenciesHDMCgroupmixedchimericr=0P<0haploidenticalMyeloidhematopoieticstemtransplantationwidelyavailablecurativeoptionSCDoriginalnon-myeloablativetrialPTincidenceGVHDratesaimedevaluatereconstitutionidentifyrejection/engraftmentsubsetsscreenedusingmultiplex-ELISAflowcytometrybaselinePT-Days180significantdifferencescytokinelevelscorrespondingclinicalsecondary44plasmaconcentrations19differentFactoranalysissuggestedindependentfactorsfirststronglyOR=2795%CI15whereassecondGROaIL-18SufficientcriticalsuccessamongHDMC≥20%LDMC<20%alongmyeloid-derivedeMDSCelevated04&003920sourcecomparedLDMC00001positivecorrelation720007BSL63004regulatorypotentialhitsserveprognosticmarkerspredictingallograftoutcometowardscurrentneedreplicatedexploredlargercohortEarlyDerivedSuppressorCellsAssociatedHighDonorChimerismFollowingSickleCellDiseasederived

Similar Articles

Cited By (5)