Rescue specialists in Cataglyphis piliscapa ants: The nature and development of ant first responders.

Elise Nowbahari, Karen L Hollis, Melanie Bey, Lara Demora, Jean-Luc Durand
Author Information
  1. Elise Nowbahari: Laboratoire d'Ethologie Expérimentale et Comparée, Université Sorbonne Paris Nord, Villetaneuse, France.
  2. Karen L Hollis: Interdisciplinary Program in Neuroscience & Behavior, Mount Holyoke College, South Hadley, MA, USA. khollis@mtholyoke.edu.
  3. Melanie Bey: Laboratoire d'Ethologie Expérimentale et Comparée, Université Sorbonne Paris Nord, Villetaneuse, France.
  4. Lara Demora: Laboratoire d'Ethologie Expérimentale et Comparée, Université Sorbonne Paris Nord, Villetaneuse, France.
  5. Jean-Luc Durand: Laboratoire d'Ethologie Expérimentale et Comparée, Université Sorbonne Paris Nord, Villetaneuse, France.

Abstract

Previous research in our laboratories has demonstrated that, within each colony of Cataglyphis piliscapa (formerly C. cursor) ants, only some individuals are capable of performing a complex sequence of behavioral patterns to free trapped nestmates-a sequence that not only is memory-dependent but also is responsive to the particular circumstances of that entrapment and how the rescue operation unfolds. Additionally, this rescue behavior is inherited patrilineally from but a few of the many males that fertilize the eggs of the colony's single queen. Here, we describe three experiments to explore rescue behavior further-namely, whether rescuers are in any way selective about which nestmates they help, how the age of rescuers and the victims that they help affect the quantity and quality of the rescue operation, and when this complex behavior first emerges in an ant's development. Taken together with the previous heritability analysis, these behavioral experiments provide clear evidence that the ability to rescue nestmates in distress should be recognized as a specialization, which together with other specialized tasks in C. piliscapa, contributes to a division of labor that increases the efficiency of the colony as a whole and, thus increases its reproductive success.

Keywords

References

  1. Andras, J. P, Hollis, K. L. Carter, K. A., Couldwell, G. & Nowbahari, E. (2020). Analysis of ants’ rescue behavior reveals heritable specialization for first responders. Journal of Experimental Biology, 223, jeb212530. https://doi.org/10.1242/jeb.212530 [DOI: 10.1242/jeb.212530]
  2. Arnan, X., Ferrandiz-Rovira, M., Pladevall, C., & Rodrigo, A. (2011). Worker size-related task partitioning in the foraging strategy of a seed-harvesting ant species. Behavioral Ecology and Sociobiology, 65, 1881–1890. https://doi.org/10.1007/s00265-011-1197-z [DOI: 10.1007/s00265-011-1197-z]
  3. Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211, 1390–1396. https://doi.org/10.1126/science.7466396 [DOI: 10.1126/science.7466396]
  4. Beckers, R., Goss, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Colony Size, communication and ant foraging strategy. Psyche: A Journal of Entomology, 96, 239–256. https://doi.org/10.1155/1989/94279 [DOI: 10.1155/1989/94279]
  5. Beshers, S. N. & Traniello, J. F. A. (1994). The adaptiveness of worker demography in the attine ant Trachymyrmex septentrionalis. Ecology, 75, 763–775. https://doi.org/10.2307/1941733 [DOI: 10.2307/1941733]
  6. Czechowski, W., Godzińska, E. J., & Kozłowski, M. W. (2002). Rescue behavior shown by workers of Formica sanguinea Latr., F. fusca L. and F. cinerea Mayr (Hymenoptera: Formicidae) in response to their nestmates caught by an ant lion larva. Annales Aoologici, 52, 423–431.
  7. d’Ettorre, P., Deisig, N., & Sandoz, J.-C. (2017). Ant acute olfaction informs about social evolution. Proceedings of the National Academy of Sciences, 114(34), 8911–8913. https://doi.org/10.1073/pnas.1711075114 [DOI: 10.1073/pnas.1711075114]
  8. Dugatkin, L. A. (2002). Animal cooperation among unrelated individuals. Naturwissenschaften, 89, 533–54. https://doi.org/10.1007/s00114-002-0379-y [DOI: 10.1007/s00114-002-0379-y]
  9. Dugatkin, L. A., Mesterton-Gibbons, M., & Houston, A. I. (1992). Beyond the prisoner’s dilemma: Towards models to discriminate among mechanisms of cooperation in nature. Trends in Ecology & Evolution, 7, 202–205. https://doi.org/10.1016/0169-5347(92)90074-L [DOI: 10.1016/0169-5347(92)90074-L]
  10. Duhoo, T., Durand, J.-L., Hollis, K. L., & Nowbahari, E. (2017). Organization of rescue behaviour sequences in ants, Cataglyphis cursor, reflects goal-directedness, plasticity and memory. Behavioral Processes, 139, 12–18. https://doi.org/10.1016/j.beproc.2017.02.006 [DOI: 10.1016/j.beproc.2017.02.006]
  11. Eyer, P.-A., Freyer, J., & Aron, S. (2012). Genetic polyethism in the polyandrous desert ant Cataglyphis cursor. Behavioral Ecology, 24, 144–151. https://doi.org/10.1093/beheco/ars146 [DOI: 10.1093/beheco/ars146]
  12. Ferguson-Gow, H., Sumner, S., Bourke, A. F. G., & Jones, K. E. (2014). Colony size predicts division of labour in attine ants. Proceedings of the Royal Society B: Biological Sciences, 281, 20141411. https://doi.org/10.1098/rspb.2014.1411 [DOI: 10.1098/rspb.2014.1411]
  13. Frank, E. T., Schmitt, T., Hovestadt, T., Mitesser, J. S., & Linsenmair, K. E. (2017). Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis. Science Advances, 3, e1602187. https://doi.org/10.1126/sciadv.1602187 [DOI: 10.1126/sciadv.1602187]
  14. Frank, E. T., Wehrhahn, M., & Linsenmair, K. E. (2018). Wound treatment and selective help in a termite-hunting ant. Proceedings of the Royal Society B: Biological Sciences, 285, 20172457. https://doi.org/10.1098/rspb.2017.2457 [DOI: 10.1098/rspb.2017.2457]
  15. Hahn-Holbrook, J., Holt-Lunstad, J., Holbrook, C., Coyne, S. M., & Lawson, E. T. (2011). Maternal defense: Breast feeding increases aggression by reducing stress. Psychological Science, 22, 1288–1295. https://doi.org/10.1177/0956797611420729 [DOI: 10.1177/0956797611420729]
  16. Hölldobler, B., & Wilson, E. O. (1990). The ants. Harvard University Press. [DOI: 10.1007/978-3-662-10306-7]
  17. Hölldobler, B., & Wilson E. O. (2009). The superorganism. Norton.
  18. Hollis, K. L. (2017). Ants and antlions: the impact of ecology, coevolution and learning on an insect predator-prey relationship. Behavioral Processes, 139, 4–11. https://doi.org/10.1016/j.beproc.2016.12.002 [DOI: 10.1016/j.beproc.2016.12.002]
  19. Hollis, K. L., & Nowbahari, E. (2013). A comparative analysis of precision rescue behaviour in sand-dwelling ants. Animal Behaviour, 85, 537–544. https://doi.org/10.1016/j.anbehav.2012.12.005 [DOI: 10.1016/j.anbehav.2012.12.005]
  20. Kwapich, C. L., & Hölldobler, B. (2019). Destruction of spiderwebs and rescue of ensnared nestmates by a granivorous desert ant (Veromessor pergandei). The American Naturalist, 194(3), 395–404. https://doi.org/10.1086/704338 . [DOI: 10.1086/704338]
  21. Kwapich, C. L., Jürgen Gadau, J., & Hölldobler, B. (2017). The ecological and genetic basis of annual worker production in the desert seed harvesting ant, Veromessor pergandei. Behavioral Ecology & Sociobiology, 71, 110. https://doi.org/10.1007/s00265-017-2333-1 [DOI: 10.1007/s00265-017-2333-1]
  22. Lenoir, A., Aron, S., Cerdá, X. and Hefetz, A. (2009). Cataglyphis desert ants: A good model for evolutionary biology in Darwin’s anniversary year—A review. Israel Journal of Entomology, 39, 1–32. http://hdl.handle.net/10261/65135
  23. Maestripieri, D. (1992). Functional aspects of maternal aggression in mammals. Canadian Journal of Zoology, 70, 1069–1077. https://doi.org/10.1139/z92-150 [DOI: 10.1139/z92-150]
  24. Miler, K. (2016). Moribund ants do not call for help. PLOS ONE, 11(3), e0151925. https://doi.org/10.1371/journal.pone.0151925 [DOI: 10.1371/journal.pone.0151925]
  25. Miler, K., Symonowicz, B., & Godzińska, E. J. (2017). Increased risk proneness or social withdrawal? The effects of shortened life expectancy on the expression of rescue behavior in workers of the ant Formica cinerea (Hymenoptera: Formicidae). Journal of Insect Behavior, 30, 632–644. https://doi.org/10.1007/s10905-017-9647-8 [DOI: 10.1007/s10905-017-9647-8]
  26. Myade, S., Cammaerts, M.-C., Suzzoni, J.-P. (1993). Home-range marking and territorial marking in Cataglyphis cursor (Hymenoptera, Formicidae). Behavioural Processes, 30, 131–142. https://doi.org/10.1016/0376-6357(93)90003-A [DOI: 10.1016/0376-6357(93)90003-A]
  27. Nowbahari, E., & Lenoir, A. (1989). Age related changes in aggression in Cataglyphis cursor (Hymenoptera, Formicidae): Influence on intercolonial relationships. Behavioural Processes, 18, 173–181. https://doi.org/10.1016/S0376-6357(89)80014-2 [DOI: 10.1016/S0376-6357(89)80014-2]
  28. Nowbahari, E., Scohier, A., Durand, J.-L., & Hollis, K. L. (2009). Ants, Cataglyphis cursor, use precisely directed rescue behavior to free entrapped relatives. PLOS ONE, 4(8), e6573. https://doi.org/10.1371/journal.pone.0006573 [DOI: 10.1371/journal.pone.0006573]
  29. Passera, L., Roncin, E., Kaufmann, B., & Keller, L. (1996). Increased soldier production in ant colonies exposed to intraspecific competition. Nature, 379, 630–631. https://doi.org/10.1038/379630a0 [DOI: 10.1038/379630a0]
  30. Retana, J., & Cerdá, X. (1990). Social organization of Cataglyphis cursor ant colonies (Hymenoptera: Formicidea): inter- and intraspecific comparisons. Ethology, 84, 105–122. https://doi.org/10.1111/j.1439-0310 [DOI: 10.1111/j.1439-0310]
  31. Retana, J., & Cerdá, X. (1991). Behavioural variability and development of Cataglyphis cursor ant workers (Hymenoptera, Formicidae). Ethology, 89, 275–286. https://doi.org/10.1111/j.1439-0310.1991.tb00373.x [DOI: 10.1111/j.1439-0310.1991.tb00373.x]
  32. Schultner, E., & Pulliainen, U. Brood recognition and discrimination in ants. (2020). Insectes Sociaux, 64, 11–34. https://doi.org/10.1007/s00040-019-00747-3 [DOI: 10.1007/s00040-019-00747-3]
  33. Taylor, K., Visvader, A., Nowbahari, E., & Hollis, K. L. (2013). Precision rescue behavior in North American ants. Evolutionary Psychology, 11, 665–677. https://doi.org/10.1177/147470491301100312 [DOI: 10.1177/147470491301100312]
  34. Uy, F. M. K., Adcock, J. D., Jeffries, S. F., & Pepere, E. (2019). Intercolony distance predicts the decision to rescue or attack conspecifics in weaver ants. Insectes Sociaux, 66, 185–192 https://doi.org/10.1007/s00040-018-0674-z [DOI: 10.1007/s00040-018-0674-z]
  35. Yang, A. S., Martin, C. H., & Nijhout, H. F. (2004). Geographic variation of caste structure among ant populations. Current Biology, 14, 514–519. https://doi.org/10.1016/j.cub.2004.03.005 [DOI: 10.1016/j.cub.2004.03.005]

MeSH Term

Animals
Ants
Behavior, Animal
Emergency Responders
Humans
Male
Social Behavior

Word Cloud

Created with Highcharts 10.0.0rescueCataglyphispiliscapabehaviorcolonyCcursorcomplexsequencebehavioraloperationexperimentsrescuersnestmateshelpfirstdevelopmenttogetherlaborincreasesRescuePreviousresearchlaboratoriesdemonstratedwithinformerlyantsindividualscapableperformingpatternsfreetrappednestmates-amemory-dependentalsoresponsiveparticularcircumstancesentrapmentunfoldsAdditionallyinheritedpatrilineallymanymalesfertilizeeggscolony'ssinglequeendescribethreeexplorefurther-namelywhetherwayselectiveagevictimsaffectquantityqualityemergesant'sTakenpreviousheritabilityanalysisprovideclearevidenceabilitydistressrecognizedspecializationspecializedtaskscontributesdivisionefficiencywholethusreproductivesuccessspecialistsants:natureantrespondersAltruismDivisionOntogenesisReciprocitySpecialization

Similar Articles

Cited By