Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students.

Sabrina Donati Zeppa, Stefano Amatori, Davide Sisti, Marco Gervasi, Deborah Agostini, Giovanni Piccoli, Valerio Pazienza, Pietro Gobbi, Marco B L Rocchi, Piero Sestili, Vilberto Stocchi
Author Information
  1. Sabrina Donati Zeppa: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  2. Stefano Amatori: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  3. Davide Sisti: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy. davide.sisti@uniurb.it. ORCID
  4. Marco Gervasi: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  5. Deborah Agostini: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  6. Giovanni Piccoli: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  7. Valerio Pazienza: Division of Gastroenterology "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy.
  8. Pietro Gobbi: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  9. Marco B L Rocchi: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  10. Piero Sestili: Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
  11. Vilberto Stocchi: Università Telematica San Raffaele, 00166, Rome, Italy.

Abstract

BACKGROUND: The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults.
METHODS: The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed.
RESULTS: Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F =3.97, p=0.029; classes: F =3.39, p=0.033, orders: F =3.17, p=0.044, families: F =1.54, p=0.037, genera: F =1.46, p=0.015, species: F =1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features.
CONCLUSIONS: Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general.

Keywords

References

  1. J Int Soc Sports Nutr. 2016 Nov 24;13:43 [PMID: 27924137]
  2. J Appl Microbiol. 2005;99(1):201-12 [PMID: 15960680]
  3. PLoS One. 2015 May 27;10(5):e0125889 [PMID: 26016739]
  4. Hypertens Res. 2018 Dec;41(12):1036-1044 [PMID: 30291307]
  5. Science. 2012 Jun 8;336(6086):1268-73 [PMID: 22674334]
  6. Microorganisms. 2020 May 24;8(5): [PMID: 32456263]
  7. Exp Physiol. 2020 Aug;105(8):1268-1279 [PMID: 32478429]
  8. J Physiol Biochem. 2020 Nov;76(4):539-548 [PMID: 32725451]
  9. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  10. Nat Metab. 2020 Sep;2(9):840-848 [PMID: 32694821]
  11. Front Microbiol. 2017 Mar 07;8:376 [PMID: 28326076]
  12. Nutrients. 2020 May 18;12(5): [PMID: 32443396]
  13. Cell. 2012 Mar 16;148(6):1258-70 [PMID: 22424233]
  14. Gut. 2018 Apr;67(4):625-633 [PMID: 28360096]
  15. mSystems. 2018 Apr 24;3(3): [PMID: 29719871]
  16. Med Sci Sports Exerc. 2019 Jan;51(1):160-167 [PMID: 30157109]
  17. Am J Physiol Endocrinol Metab. 2019 Jul 1;317(1):E158-E171 [PMID: 31039010]
  18. Int J Obes (Lond). 2019 Apr;43(4):713-723 [PMID: 30568265]
  19. Int J Sport Nutr Exerc Metab. 2019 May 1;29(3):249-253 [PMID: 29989465]
  20. Microbiome. 2016 Aug 08;4(1):42 [PMID: 27502158]
  21. Sci Rep. 2019 Sep 17;9(1):13424 [PMID: 31530820]
  22. Gut Microbes. 2020 Nov 9;12(1):1-18 [PMID: 33289609]
  23. Nat Rev Endocrinol. 2020 Feb;16(2):71-72 [PMID: 31728050]
  24. Front Microbiol. 2018 Oct 03;9:2323 [PMID: 30337914]
  25. Front Endocrinol (Lausanne). 2020 Dec 07;11:569085 [PMID: 33365012]
  26. Nutrients. 2019 Dec 20;12(1): [PMID: 31861755]
  27. Microorganisms. 2019 Jan 10;7(1): [PMID: 30634578]
  28. PLoS One. 2021 Feb 25;16(2):e0247039 [PMID: 33630874]
  29. Dig Liver Dis. 2018 May;50(5):421-428 [PMID: 29567414]
  30. Exerc Sport Sci Rev. 2021 Jan;49(1):42-49 [PMID: 33044333]
  31. Nutr Diabetes. 2015 Jun 15;5:e159 [PMID: 26075636]
  32. Front Nutr. 2020 Jan 10;6:191 [PMID: 31998739]
  33. Med Sci Sports Exerc. 2018 Apr;50(4):747-757 [PMID: 29166320]
  34. Front Nutr. 2021 Jun 10;8:637010 [PMID: 34179053]
  35. Exp Mol Med. 2020 Jul;52(7):1048-1061 [PMID: 32624568]
  36. Int J Sports Med. 2021 Jun;42(7):610-623 [PMID: 33321523]
  37. Nat Med. 2019 Jul;25(7):1104-1109 [PMID: 31235964]
  38. J Int Soc Sports Nutr. 2020 Jan 20;17(1):6 [PMID: 31959202]
  39. Inflammation. 2020 Apr;43(2):507-517 [PMID: 31797122]
  40. Nutrients. 2020 Mar 21;12(3): [PMID: 32245173]
  41. Nutrients. 2017 Jul 25;9(8): [PMID: 28757576]
  42. J Lipid Res. 2013 Sep;54(9):2325-40 [PMID: 23821742]
  43. Front Immunol. 2019 Mar 11;10:277 [PMID: 30915065]
  44. Microbiome. 2017 Aug 10;5(1):98 [PMID: 28797298]
  45. Gut. 2014 Dec;63(12):1913-20 [PMID: 25021423]
  46. Scand J Med Sci Sports. 2018 May;28(5):1541-1551 [PMID: 29364545]
  47. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  48. Am J Physiol Gastrointest Liver Physiol. 2020 Nov 1;319(5):G589-G608 [PMID: 32902315]

MeSH Term

Diet
Exercise
Gastrointestinal Microbiome
Humans
Male
Students
Young Adult

Word Cloud

Created with Highcharts 10.0.0p=0gutexercisemicrobiotamicrobialcompositionFhigh-intensityphysicalweekshealthyfeaturesintervalmalecollegestudentsinducedchanges=3=1environmentalconditionshumanhealthdiversityeffectsnineanalysedcyclingtrainingdifferencesrelativeabundancetaxonomiclevelsdietaryindex:NineBACKGROUND:constitutesdynamicsystemconstantlychallengedincludingLimitedstudiessuggestplaybeneficialroleincreasingevenmicroorganismsdependsintensitydurationstudyaimedinvestigateyoungadultsMETHODS:seventeen16SrRNAampliconsequencingPERMANOVArepeatedmeasuresusedtestpre-postcorrelationsvariationsalsoassessedRESULTS:Physicalphyla:97029classes:39033orders:17044families:54037genera:46015species:38007Converselyfoundprepost-trainingcommunityrichnessChao1:V=10506ShannonV=6252SimpsonV=5943Changeseighteengeneracorrelatedtwentyfactorsgroupedsport-relatedCONCLUSIONS:modificationsshiftingpopulationtowardshealthiermicrobiomebenefitgeneralindoornon-athletediethabits

Similar Articles

Cited By