Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals.

Shanice E W Janssens, Alexander T Sack
Author Information
  1. Shanice E W Janssens: Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
  2. Alexander T Sack: Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.

Abstract

Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.

Keywords

References

  1. Psychophysiology. 2013 Jun;50(6):570-82 [PMID: 23551082]
  2. Neuropsychologia. 2006;44(13):2700-16 [PMID: 16455113]
  3. Cereb Cortex. 2013 Jul;23(7):1593-605 [PMID: 22661405]
  4. J Neurosci. 2019 Sep 4;39(36):7183-7194 [PMID: 31341028]
  5. J Neurosci. 2013 Aug 21;33(34):13773-83 [PMID: 23966698]
  6. Neurosci Lett. 2007 May 18;418(3):232-5 [PMID: 17467169]
  7. Neuropsychologia. 2009 Jan;47(1):284-8 [PMID: 18722393]
  8. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:97-103 [PMID: 10590980]
  9. Innov Clin Neurosci. 2015 Jul-Aug;12(7-8):12-9 [PMID: 26351619]
  10. Eur J Neurosci. 2018 Oct;48(7):2498-2508 [PMID: 29044823]
  11. Brain. 2000 Mar;123 Pt 3:572-84 [PMID: 10686179]
  12. PLoS One. 2021 Sep 16;16(9):e0255815 [PMID: 34529682]
  13. Neuroscience. 2016 Apr 21;320:205-9 [PMID: 26872998]
  14. Electroencephalogr Clin Neurophysiol. 1989 Nov-Dec;74(6):458-62 [PMID: 2480226]
  15. Neuroimage. 2012 Feb 1;59(3):3015-20 [PMID: 22023740]
  16. Eur J Neurosci. 2016 Feb;43(4):572-9 [PMID: 26663460]
  17. J Neurosci. 2012 Jan 4;32(1):4-11 [PMID: 22219265]
  18. Brain Stimul. 2018 Jul - Aug;11(4):734-742 [PMID: 29615367]
  19. Nat Commun. 2021 May 25;12(1):3151 [PMID: 34035240]
  20. Lancet Neurol. 2006 Aug;5(8):708-12 [PMID: 16857577]
  21. J Neurosci. 2019 Dec 11;39(50):10034-10043 [PMID: 31685655]
  22. Trends Neurosci. 2016 Nov;39(11):782-795 [PMID: 27697295]
  23. Eur J Neurosci. 2020 Jun;51(11):2299-2313 [PMID: 31943418]
  24. Brain Stimul. 2014 May-Jun;7(3):365-71 [PMID: 24507574]
  25. Curr Opin Psychiatry. 2019 Sep;32(5):409-415 [PMID: 31145145]
  26. Neurosci Lett. 1999 Jan 15;259(3):165-8 [PMID: 10025584]
  27. Psychiatry Res. 2019 Mar;273:770-781 [PMID: 31207865]
  28. Brain Stimul. 2015 May-Jun;8(3):499-508 [PMID: 25648377]
  29. Exp Brain Res. 2012 Jul;220(1):79-87 [PMID: 22623093]
  30. Brain Res. 2018 Dec 1;1700:190-198 [PMID: 30194017]
  31. Eur J Neurosci. 2012 Jan;35(1):125-34 [PMID: 22118241]
  32. Cortex. 2014 Oct;59:1-11 [PMID: 25113954]
  33. Curr Opin Neurobiol. 2000 Apr;10(2):232-7 [PMID: 10753803]
  34. Brain Stimul. 2018 Mar - Apr;11(2):374-389 [PMID: 29191438]
  35. Neuroimage. 2015 Sep;118:209-18 [PMID: 26052083]
  36. Curr Biol. 2006 Aug 8;16(15):1479-88 [PMID: 16890523]
  37. Curr Biol. 2007 Jan 23;17(2):134-9 [PMID: 17240338]
  38. PLoS Biol. 2020 Oct 1;18(10):e3000834 [PMID: 33001971]
  39. Neuroimage. 2012 Jul 2;61(3):651-9 [PMID: 22032946]
  40. Science. 2005 Apr 29;308(5722):702-4 [PMID: 15860630]
  41. Science. 2004 Jun 25;304(5679):1926-9 [PMID: 15218136]
  42. Front Hum Neurosci. 2017 Aug 25;11:432 [PMID: 28890693]
  43. Clin EEG Neurosci. 2006 Jul;37(3):247-51 [PMID: 16929713]
  44. Nat Commun. 2019 Jun 14;10(1):2642 [PMID: 31201331]
  45. Behav Brain Res. 2013 Jan 1;236(1):67-77 [PMID: 22921373]
  46. J Physiol. 2010 Jul 1;588(Pt 13):2291-304 [PMID: 20478978]
  47. J Neurophysiol. 2014 Feb;111(3):513-9 [PMID: 24198325]
  48. Nat Rev Neurosci. 2000 Oct;1(1):73-9 [PMID: 11252771]
  49. Neurology. 1991 May;41(5):697-702 [PMID: 2027485]
  50. J Affect Disord. 2005 Nov;88(3):255-67 [PMID: 16139895]
  51. J Cogn Neurosci. 2013 Oct;25(10):1664-77 [PMID: 23767923]
  52. Neuroimage. 2021 Aug 15;237:118093 [PMID: 33940146]
  53. PLoS One. 2012;7(11):e48808 [PMID: 23155408]
  54. Clin Neurophysiol. 2014 Feb;125(2):320-6 [PMID: 23932365]
  55. Neuroimage. 2012 Jan 2;59(1):616-24 [PMID: 21840406]
  56. Front Cell Neurosci. 2016 Oct 18;10:240 [PMID: 27803651]
  57. J Clin Neurophysiol. 1998 Jul;15(4):333-43 [PMID: 9736467]
  58. Hum Brain Mapp. 2010 Nov;31(11):1643-52 [PMID: 20162598]
  59. Clin Neurophysiol. 2015 Jun;126(6):1071-1107 [PMID: 25797650]
  60. Brain Stimul. 2014 May-Jun;7(3):372-80 [PMID: 24630849]
  61. Eur J Neurosci. 2022 Jun;55(11-12):3418-3437 [PMID: 34363269]
  62. Front Psychol. 2018 Nov 01;9:2108 [PMID: 30443236]
  63. Clin Neurophysiol. 2020 Feb;131(2):474-528 [PMID: 31901449]
  64. Brain Topogr. 2019 Nov;32(6):1013-1019 [PMID: 31520249]
  65. Front Hum Neurosci. 2013 Jun 14;7:279 [PMID: 23785325]
  66. Neuropsychologia. 1997 Aug;35(8):1121-31 [PMID: 9256377]
  67. Clin Neurophysiol. 2017 Nov;128(11):2318-2329 [PMID: 29040922]
  68. PLoS One. 2009 Dec 14;4(12):e8307 [PMID: 20011541]
  69. Nature. 2000 Jul 13;406(6792):147-50 [PMID: 10910346]
  70. J Neurosci. 2020 Jan 8;40(2):369-381 [PMID: 31754012]
  71. J Physiol. 2007 Sep 1;583(Pt 2):567-79 [PMID: 17627997]
  72. Cereb Cortex. 2014 Feb;24(2):396-402 [PMID: 23048022]
  73. J Neurophysiol. 2013 Feb;109(4):1214-27 [PMID: 23221407]
  74. Neuron. 2005 Jan 20;45(2):201-6 [PMID: 15664172]
  75. Clin Neurophysiol. 2002 Jul;113(7):1165-71 [PMID: 12088713]
  76. Neuron. 2009 Apr 30;62(2):291-303 [PMID: 19409273]
  77. Brain Stimul. 2019 Jan - Feb;12(1):110-118 [PMID: 30268710]
  78. Exp Brain Res. 2008 Dec;191(4):383-402 [PMID: 18936922]
  79. Brain Stimul. 2020 Sep - Oct;13(5):1476-1488 [PMID: 32758665]
  80. Clin Neurophysiol. 2002 Sep;113(9):1501-4 [PMID: 12169333]
  81. Clin Neurophysiol. 2009 Sep;120(9):1724-31 [PMID: 19683960]
  82. Front Neurosci. 2019 Aug 14;13:841 [PMID: 31474818]
  83. Brain Stimul. 2017 Jul - Aug;10(4):828-835 [PMID: 28522346]
  84. Restor Neurol Neurosci. 2012;30(3):213-24 [PMID: 22406488]
  85. Front Hum Neurosci. 2013 Jun 28;7:317 [PMID: 23825454]
  86. Int J Psychophysiol. 2016 May;103:12-21 [PMID: 25659527]
  87. Front Hum Neurosci. 2015 May 15;9:265 [PMID: 26029083]
  88. J Physiol. 2008 Dec 1;586(23):5717-25 [PMID: 18845611]
  89. Clin Neurophysiol. 2014 Nov;125(11):2150-2206 [PMID: 25034472]
  90. J Physiol. 1993 Oct;470:383-93 [PMID: 8068071]
  91. Neurosci Lett. 2020 Feb 6;719:133330 [PMID: 29294333]
  92. Neuroimage. 2014 May 15;92:46-55 [PMID: 24508648]
  93. Front Hum Neurosci. 2017 Sep 27;11:471 [PMID: 29021749]
  94. Neuron. 2007 Jul 19;55(2):187-99 [PMID: 17640522]
  95. Behav Brain Res. 2015 Apr 1;282:70-5 [PMID: 25541040]
  96. J Physiol. 1998 Apr 15;508 ( Pt 2):625-33 [PMID: 9508823]
  97. Electroencephalogr Clin Neurophysiol. 1993 Dec;89(6):415-23 [PMID: 7507428]
  98. Clin Neurophysiol. 2010 Apr;121(4):492-501 [PMID: 20093074]
  99. Brain Res Rev. 2007 Jan;53(1):63-88 [PMID: 16887192]
  100. Cortex. 2018 Jun;103:142-152 [PMID: 29635161]
  101. Psychol Res. 2007 Nov;71(6):659-66 [PMID: 16642347]
  102. Front Neurosci. 2018 Dec 13;12:954 [PMID: 30618580]
  103. J Cogn Neurosci. 2017 Jun;29(6):1022-1032 [PMID: 28129054]
  104. Front Psychol. 2014 Sep 23;5:1019 [PMID: 25295015]
  105. Clin Neurophysiol. 2020 Nov;131(11):2691-2699 [PMID: 33002731]
  106. Cereb Cortex. 2012 Mar;22(3):701-9 [PMID: 21685399]
  107. Front Cell Neurosci. 2015 Sep 01;9:335 [PMID: 26388729]
  108. Brain Stimul. 2016 May-Jun;9(3):336-346 [PMID: 27090022]
  109. Exp Brain Res. 2007 Aug;181(4):615-26 [PMID: 17487476]
  110. Neuroimage. 2013 Nov 15;82:260-72 [PMID: 23702420]
  111. Cereb Cortex. 2016 Oct;26(10):3977-90 [PMID: 27522077]
  112. Clin Neurophysiol. 2017 May;128(5):843-857 [PMID: 28233641]
  113. Brain Stimul. 2014 Jul-Aug;7(4):541-52 [PMID: 24794287]
  114. J Neurosci. 2015 Oct 21;35(42):14341-52 [PMID: 26490871]
  115. Exp Brain Res. 2008 May;187(3):467-75 [PMID: 18320180]
  116. Cereb Cortex. 2010 Nov;20(11):2702-11 [PMID: 20176690]
  117. J Neurosci. 2012 Feb 8;32(6):1981-8 [PMID: 22323712]
  118. J Neurol Sci. 2003 Nov 15;215(1-2):75-8 [PMID: 14568132]
  119. Trends Neurosci. 2007 Apr;30(4):150-8 [PMID: 17307258]
  120. Exp Brain Res. 2000 Aug;133(4):425-30 [PMID: 10985677]
  121. Nat Rev Neurol. 2014 Oct;10(10):597-608 [PMID: 25201238]
  122. Curr Opin Neurobiol. 2006 Oct;16(5):593-9 [PMID: 16949276]
  123. Cereb Cortex. 2014 Jul;24(7):1708-19 [PMID: 23395847]
  124. PLoS One. 2017 Apr 6;12(4):e0175230 [PMID: 28384347]
  125. J Neurosci Methods. 2008 Oct 30;175(1):17-24 [PMID: 18762214]
  126. Neuroimage. 2006 Feb 15;29(4):1326-35 [PMID: 16185899]
  127. Front Neurosci. 2020 Apr 21;14:314 [PMID: 32372907]
  128. Curr Biol. 2007 Mar 20;17(6):R196-9 [PMID: 17371754]
  129. Neurosci Lett. 1990 Apr 20;112(1):54-8 [PMID: 2385364]
  130. Neuron. 2002 Jul 3;35(1):195-204 [PMID: 12123619]
  131. Cereb Cortex. 2008 Sep;18(9):2010-8 [PMID: 18093905]
  132. Front Behav Neurosci. 2015 Jan 30;9:5 [PMID: 25688194]
  133. Electroencephalogr Clin Neurophysiol. 1995 Oct;97(5):231-7 [PMID: 7489684]
  134. Neurosci Biobehav Rev. 2014 Sep;45:295-304 [PMID: 25010557]
  135. Restor Neurol Neurosci. 2012;30(3):199-211 [PMID: 22398421]
  136. J Neurosci. 2011 Aug 17;31(33):11889-93 [PMID: 21849549]
  137. Prog Neurobiol. 2011 Jul;94(2):149-65 [PMID: 21527312]
  138. Brain Stimul. 2009 Jan;2(1):50-4 [PMID: 20539835]
  139. Clin Neurophysiol. 2021 Oct;132(10):2639-2653 [PMID: 34344609]
  140. Sci Rep. 2018 Apr 30;8(1):6722 [PMID: 29712981]
  141. Front Cell Neurosci. 2016 May 25;10:143 [PMID: 27252625]
  142. Trends Cogn Sci. 2003 Dec;7(12):553-9 [PMID: 14643372]
  143. Brain Stimul. 2017 May - Jun;10(3):588-595 [PMID: 28024963]
  144. Biomed Res Int. 2014;2014:936096 [PMID: 25013813]
  145. Neuroimage. 2019 May 15;192:101-114 [PMID: 30844505]
  146. Brain Res Brain Res Rev. 2003 Sep;43(1):41-56 [PMID: 14499461]
  147. Exp Brain Res. 2008 May;187(1):51-9 [PMID: 18231784]
  148. Neuroimage. 2016 Oct 15;140:4-19 [PMID: 26883069]
  149. Cereb Cortex. 2007 Dec;17(12):2841-52 [PMID: 17337745]
  150. Cortex. 2009 Oct;45(9):1111-6 [PMID: 19111289]
  151. J Neurosci. 2012 Jan 4;32(1):243-53 [PMID: 22219286]
  152. Neuroreport. 2008 Jan 22;19(2):203-8 [PMID: 18185109]
  153. Commun Biol. 2020 Jan 22;3(1):40 [PMID: 31969657]
  154. Neurosci Lett. 1998 Jul 10;250(3):141-4 [PMID: 9708852]
  155. J Neurosci. 2011 Mar 30;31(13):4935-43 [PMID: 21451032]
  156. Neuropsychologia. 2015 Jul;74:21-9 [PMID: 25451041]
  157. Curr Biol. 2011 Jul 26;21(14):1176-85 [PMID: 21723129]
  158. Neuroimage. 2021 Mar;228:117696 [PMID: 33385544]
  159. Front Cell Neurosci. 2016 Apr 07;10:92 [PMID: 27092055]
  160. Brain Stimul. 2010 Apr;3(2):87-94 [PMID: 20633437]
  161. Front Hum Neurosci. 2016 Oct 07;10:504 [PMID: 27774060]
  162. Neuropsychologia. 2020 Feb 3;137:107304 [PMID: 31838099]
  163. Brain Stimul. 2018 Mar - Apr;11(2):337-345 [PMID: 29174304]
  164. Lancet. 1985 May 11;1(8437):1106-7 [PMID: 2860322]

Grants

  1. EP-C-15-008/EPA

Word Cloud

Created with Highcharts 10.0.0TMSoscillatoryvariabilityeffectsstatemagneticstimulationmayspontaneousmultimodalindividualbraincontrolTranscranialcauseactivitypracticeefficacyfluctuationsneuronaloscillationstranscranialcurrentclosed-loopcanmeasurableneuralbehavioralperformancehealthyvolunteersadditionincreasinglyusedclinicaltreatingvariousneuropsychiatricdisordersUnfortunatelyTMS-inducedshowlargeintra-inter-subjecthinderingreliabilityOnepossiblesourcepresentrecentstudiesusingincludingTMS-EMGelectromyographyTMS-tACSalternatingconcurrentTMS-EEG-fMRIelectroencephalographyfunctionalresonanceimagingevaluateaffectssignalpropagationwithintargetednetworksdemonstratetimeinfluencesimmediatelonger-lastingfindingsindicateleastpartattributableignoringIgnoringstate-dependentspreadgreatfarpoorlyunderstoodprovenimpossiblethereforealsocomparetwotechnicalsolutionsdirectlyaccountnamelyusetACSexternallystatesapplyoptimalcontrolledbstate-triggereddescribedapproachesparamountestablishingrobustallowenhancedoutcomeinterventionsaimedmodulatinginformationflowachievedesirablechangescognitionmoodbehaviorSpontaneousFluctuationsOscillatoryBrainStateCauseDifferencesMagneticStimulationEffectsWithinIndividualsinter-andintra-subject

Similar Articles

Cited By