Distinguishing gene flow between malaria parasite populations.

Tyler S Brown, Olufunmilayo Arogbokun, Caroline O Buckee, Hsiao-Han Chang
Author Information
  1. Tyler S Brown: Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America. ORCID
  2. Olufunmilayo Arogbokun: Infectious Disease Epidemiology and Ecology Lab, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America. ORCID
  3. Caroline O Buckee: Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America. ORCID
  4. Hsiao-Han Chang: Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America. ORCID

Abstract

Measuring gene flow between malaria parasite populations in different geographic locations can provide strategic information for malaria control interventions. Multiple important questions pertaining to the design of such studies remain unanswered, limiting efforts to operationalize genomic surveillance tools for routine public health use. This report examines the use of population-level summaries of genetic divergence (FST) and relatedness (identity-by-descent) to distinguish levels of gene flow between malaria populations, focused on field-relevant questions about data size, sampling, and interpretability of observations from genomic surveillance studies. To do this, we use P. falciparum whole genome sequence data and simulated sequence data approximating malaria populations evolving under different current and historical epidemiological conditions. We employ mobile-phone associated mobility data to estimate parasite migration rates over different spatial scales and use this to inform our analysis. This analysis underscores the complementary nature of divergence- and relatedness-based metrics for distinguishing gene flow over different temporal and spatial scales and characterizes the data requirements for using these metrics in different contexts. Our results have implications for the design and implementation of malaria genomic surveillance studies.

References

  1. Nat Commun. 2018 Apr 11;9(1):1381 [PMID: 29643376]
  2. Malar J. 2015 Oct 05;14:388 [PMID: 26437860]
  3. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  4. J Infect Dis. 2004 Nov 1;190(9):1547-55 [PMID: 15478058]
  5. Elife. 2021 Aug 10;10: [PMID: 34372970]
  6. Mol Biol Evol. 2000 Oct;17(10):1467-82 [PMID: 11018154]
  7. PLoS Comput Biol. 2016 May 04;12(5):e1004842 [PMID: 27145223]
  8. Genetics. 2013 Jun;194(2):301-26 [PMID: 23733848]
  9. Malar J. 2018 May 15;17(1):196 [PMID: 29764422]
  10. Sci Data. 2016 Aug 16;3:160066 [PMID: 27529469]
  11. Mol Biol Evol. 2012 Nov;29(11):3427-39 [PMID: 22734050]
  12. Malar J. 2012 Dec 11;11:412 [PMID: 23232077]
  13. Genome Res. 2016 Sep;26(9):1288-99 [PMID: 27531718]
  14. Lancet Infect Dis. 2017 Oct;17(10):1022-1023 [PMID: 28948924]
  15. Science. 2013 Dec 13;342(6164):1337-42 [PMID: 24337289]
  16. PLoS Negl Trop Dis. 2021 Feb 2;15(2):e0009106 [PMID: 33529229]
  17. PLoS One. 2012;7(8):e42649 [PMID: 22905157]
  18. Genetics. 2019 Aug;212(4):1337-1351 [PMID: 31209105]
  19. Sci Rep. 2021 Jan 13;11(1):923 [PMID: 33441598]
  20. Nature. 2010 Sep 23;467(7314):420-5 [PMID: 20864995]
  21. Epidemics. 2021 Jun;35:100441 [PMID: 33667878]
  22. Am J Trop Med Hyg. 2016 Nov 2;95(5):1077-1085 [PMID: 27601522]
  23. Bioinformatics. 2013 Jul 01;29(13):i180-8 [PMID: 23812983]
  24. Elife. 2019 Apr 02;8: [PMID: 30938289]
  25. Wellcome Open Res. 2021 Feb 24;6:42 [PMID: 33824913]
  26. Malar J. 2020 Jul 27;19(1):271 [PMID: 32718342]
  27. Lancet Infect Dis. 2018 Mar;18(3):337-345 [PMID: 29398391]
  28. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7067-72 [PMID: 25941365]
  29. Malar J. 2010 Nov 23;9:336 [PMID: 21092231]
  30. PLoS Genet. 2017 Oct 27;13(10):e1007065 [PMID: 29077712]
  31. Genetics. 1992 Oct;132(2):583-9 [PMID: 1427045]
  32. Emerg Infect Dis. 2010 Nov;16(11):1686-94 [PMID: 21029525]
  33. Nat Commun. 2019 Jun 17;10(1):2665 [PMID: 31209259]
  34. BMC Med. 2018 Oct 18;16(1):190 [PMID: 30333020]
  35. Malar J. 2008 Oct 29;7:223 [PMID: 18959790]
  36. Lancet Infect Dis. 2017 May;17(5):491-497 [PMID: 28161569]
  37. Bioinformatics. 2002 Feb;18(2):337-8 [PMID: 11847089]

Grants

  1. T32 AI007061/NIAID NIH HHS

MeSH Term

Animals
Gene Flow
Genetic Variation
Genetics, Population
Genome
Geography
Humans
Malaria, Falciparum
Plasmodium falciparum
Whole Genome Sequencing

Word Cloud

Created with Highcharts 10.0.0malariadifferentdatageneflowpopulationsuseparasitestudiesgenomicsurveillancequestionsdesignsequencespatialscalesanalysismetricsMeasuringgeographiclocationscanprovidestrategicinformationcontrolinterventionsMultipleimportantpertainingremainunansweredlimitingeffortsoperationalizetoolsroutinepublichealthreportexaminespopulation-levelsummariesgeneticdivergenceFSTrelatednessidentity-by-descentdistinguishlevelsfocusedfield-relevantsizesamplinginterpretabilityobservationsPfalciparumwholegenomesimulatedapproximatingevolvingcurrenthistoricalepidemiologicalconditionsemploymobile-phoneassociatedmobilityestimatemigrationratesinformunderscorescomplementarynaturedivergence-relatedness-baseddistinguishingtemporalcharacterizesrequirementsusingcontextsresultsimplicationsimplementationDistinguishing

Similar Articles

Cited By