Effect on Antimicrobial Resistance of a Policy Restricting Over-the-Counter Antimicrobial Sales in a Large Metropolitan Area, São Paulo, Brazil.

Maria L Moura, Icaro Boszczowski, Manuela Blaque, Rafael M Mussarelli, Victor Fossaluza, Ligia C Pierrotti, Gustavo Campana, Maria C Brandileone, Rosemeire Zanella, Samanta C G Almeida, Anna S Levin
Author Information

Abstract

Although restricting over-the-counter (OTC) antimicrobial drug sales is recommended globally, no data track its effect on antimicrobial resistance (AMR) in bacteria. We evaluated the effect of a national policy restricting OTC antimicrobial sales, put in place in November 2010, on AMR in a metropolitan region of São Paulo, Brazil. We reviewed associations between antimicrobial sales from private pharmacies and AMR in 404,558 Escherichia coli and 5,797 Streptococcus pneumoniae isolates using a dynamic regression model based on a Bayesian approach. After policy implementation, a substantial drop in AMR in both bacterial species followed decreased amoxicillin and trimethoprim/sulfamethoxazole sales. Conversely, increased ciprofloxacin sales were associated with increased ciprofloxacin resistance, and extended spectrum β-lactamases-positive E. coli isolates and azithromycin sales increases after 2013 were associated with increased erythromycin resistance in S. pneumoniae isolates. These findings suggest that restricting OTC antimicrobial sales may influence patterns of AMR, but multifaceted approaches are needed to avoid unintended consequences.

Keywords

References

  1. Vaccine. 2019 Aug 23;37(36):5357-5363 [PMID: 31351796]
  2. S Afr Med J. 2015 Apr 06;105(5):325 [PMID: 26242647]
  3. Epidemiol Infect. 2008 Jul;136(7):928-39 [PMID: 17697443]
  4. Medicine (Baltimore). 2015 Sep;94(38):e1605 [PMID: 26402824]
  5. BMC Health Serv Res. 2019 Jul 31;19(1):536 [PMID: 31366363]
  6. mBio. 2016 Apr 26;7(2):e00347-16 [PMID: 27118589]
  7. BMC Public Health. 2019 Apr 23;19(1):426 [PMID: 31014305]
  8. J Clin Microbiol. 2016 Apr;54(4):840-4 [PMID: 26791363]
  9. Lancet. 2016 Jan 9;387(10014):176-87 [PMID: 26603922]
  10. Hum Vaccin Immunother. 2016;12(2):285-92 [PMID: 26905679]
  11. J Glob Antimicrob Resist. 2017 Sep;10:195-199 [PMID: 28735057]
  12. Can J Infect Dis. 2004 Jan;15(1):29-35 [PMID: 18159441]
  13. Microb Drug Resist. 2011 Mar;17(1):31-6 [PMID: 20809835]
  14. Biomed Res Int. 2014;2014:601630 [PMID: 24860827]
  15. Int J Infect Dis. 2019 Aug;85:67-69 [PMID: 31150843]
  16. Euro Surveill. 2019 Aug;24(33): [PMID: 31431208]
  17. Pediatr Infect Dis J. 2018 Jan;37(1):97-102 [PMID: 29088026]
  18. J Bras Pneumol. 2018 Sep-Oct;44(5):405-423 [PMID: 30517341]
  19. PLoS Med. 2019 Jun 11;16(6):e1002819 [PMID: 31185011]

MeSH Term

Anti-Bacterial Agents
Anti-Infective Agents
Bayes Theorem
Brazil
Drug Resistance, Bacterial
Escherichia coli
Microbial Sensitivity Tests
Policy

Chemicals

Anti-Bacterial Agents
Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0antimicrobialsalesAMRresistancerestrictingOTCpolicyBrazilisolatesincreaseddrugsover-the-countereffectbacteriaSãoPaulocolipneumoniaeciprofloxacinassociatedAntimicrobialpublicAlthoughdrugrecommendedgloballydatatrackevaluatednationalputplaceNovember2010metropolitanregionreviewedassociationsprivatepharmacies404558Escherichia5797StreptococcususingdynamicregressionmodelbasedBayesianapproachimplementationsubstantialdropbacterialspeciesfolloweddecreasedamoxicillintrimethoprim/sulfamethoxazoleConverselyextendedspectrumβ-lactamases-positiveEazithromycinincreases2013erythromycinSfindingssuggestmayinfluencepatternsmultifacetedapproachesneededavoidunintendedconsequencesEffectResistancePolicyRestrictingOver-the-CounterSalesLargeMetropolitanAreaanti-infectiveagentsgovernmentregulationnonprescriptionhealth

Similar Articles

Cited By