Catalytic antimicrobial therapy using nanozymes.

Qian Wang, Jing Jiang, Lizeng Gao
Author Information
  1. Qian Wang: CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
  2. Jing Jiang: CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
  3. Lizeng Gao: CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. ORCID

Abstract

Nanozymes are nanomaterials with enzyme-like characteristics, which catalyze the conversion of enzyme substrates and follow enzymatic kinetics under physiological conditions. As a new generation of artificial enzymes, nanozymes provide alternative approaches for those upon enzymatic catalysis. Compared with natural enzymes, nanozymes have the advantages of simple preparation, good stability and low cost, which makes nanozymes promising for application in many fields, such as antimicrobial infection treatment. Many studies have reported that nanozymes are capable of killing a number of pathogenic bacteria with resistance, fungi as well as viruses, and have shown great curative effects for diseases caused by these pathogens. Herein, we summarize the application of nanozymes for antibacterial, antiviral, and antifungal therapies and outline the issues needing resolution in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.

Keywords

References

  1. Abdelhamid, H. N., Mahmoud, G. A. E., & Sharmoukh, W. (2020). A cerium-based MOFzyme with multi-enzyme-like activity for the disruption and inhibition of fungal recolonization. Journal of Materials Chemistry B, 8(33), 7548-7556. https://doi.org/10.1039/d0tb00894j
  2. Adamson, C. S., Chibale, K., Goss, R. J. M., Jaspars, M., Newman, D. J., & Dorrington, R. A. (2021). Antiviral drug discovery: Preparing for the next pandemic. Chemical Society Reviews, 50(16), 9346-9346. https://doi.org/10.1039/d1cs90064a
  3. Al-Anazi, K. A., & Al-Jasser, A. M. (2014). Infections caused by acinetobacter baumannii in recipients of hematopoietic stem cell transplantation. Frontiers in Oncology, 4, 186. https://doi.org/10.3389/fonc.2014.00186
  4. Amieva, M., & Peek, R. M. (2016). Pathobiology of helicobacter pylori-induced gastric cancer. Gastroenterology, 150(1), 64-78. https://doi.org/10.1053/j.gastro.2015.09.004
  5. Arias, C. A., & Murray, B. E. (2009). Antibiotic-resistant bugs in the 21st century-A clinical super-challenge. The New England Journal of Medicine, 360(5), 439-443. https://doi.org/10.1056/NEJMp0804651
  6. Asuni, A. A., Guridi, M., Sanchez, S., & Sadowski, M. J. (2015). Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo. Neurochemistry International, 90, 152-165. https://doi.org/10.1016/j.neuint.2015.08.006
  7. Baker, S. J., Payne, D. J., Rappuoli, R., & De Gregorio, E. (2018). Technologies to address antimicrobial resistance. Journal of Proceedings of the National Academy of Sciences, 115(51), 12887-12895. https://doi.org/10.1073/pnas.1717160115
  8. Bedoya-Correa, C. M., Rincon Rodriguez, R. J., & Parada-Sanchez, M. T. (2019). Genomic and phenotypic diversity of Streptococcus mutans. Journal of Oral Biosciences, 61(1), 22-31. https://doi.org/10.1016/j.job.2018.11.001
  9. Branski, L. K., Al-Mousawi, A., Rivero, H., Jeschke, M. G., Sanford, A. P., & Herndon, D. N. (2009). Emerging infections in burns. Surgical Infections, 10(5), 389-397. https://doi.org/10.1089/sur.2009.024
  10. Cai, T. T., Fang, G., Tian, X., Yin, J. J., Chen, C. Y., & Ge, C. C. (2019). Optimization of antibacterial efficacy of noble-metal-based core-shell nanostructures and effect of natural organic matter. ACS Nano, 13(11), 12694-12702. https://doi.org/10.1021/acsnano.9b04366
  11. Cao, F. F., Zhang, L., You, Y. W., Zheng, L. R., Ren, J. S., & Qu, X. G. (2020). An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angewandte Chemie-International Edition, 59(13), 5108-5115. https://doi.org/10.1002/anie.201912182
  12. Cattoir, V., & Felden, B. (2019). Future antibacterial strategies: From basic concepts to clinical challenges. The Journal of Infectious Diseases, 220(3), 350-360. https://doi.org/10.1093/infdis/jiz134
  13. Chang, M., & Nguyen, T. T. (2021). Strategy for treatment of infected diabetic foot ulcers. Accounts of Chemical Research, 54(5), 1080-1093. https://doi.org/10.1021/acs.accounts.0c00864
  14. Cillóniz, C., Torres, A., Niederman, M., van der Eerden, M., Chalmers, J., Welte, T., & Blasi, F. (2016). Community-acquired pneumonia related to intracellular pathogens. Intensive Care Medicine, 42(9), 1374-1386. https://doi.org/10.1007/s00134-016-4394-4
  15. Cormode, D. P., Gao, L., & Koo, H. (2018). Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends in Biotechnology, 36(1), 15-29. https://doi.org/10.1016/j.tibtech.2017.09.006
  16. Cox, J. M. (1995). Salmonella enteritidis: Virulence factors and invasive infection in poultry. Trends in Food Science & Technology, 6(12), 407-410. https://doi.org/10.1016/S0924-2244(00)89219-5
  17. Crum-Cianflone, N. F. (2008). Bacterial, fungal, parasitic, and viral myositis. Clinical Microbiology Reviews, 21(3), 473-494. https://doi.org/10.1128/cmr.00001-08
  18. Das, A. S., & Zou, W. Q. (2016). Prions: Beyond a single protein. Clinical Microbiology Reviews, 29(3), 633-658. https://doi.org/10.1128/Cmr.00046-15
  19. D'Avignon, L. C., Hogan, B. K., Murray, C. K., Loo, F. L., Hospenthal, D. R., Cancio, L. C., Kim, S. H., Renz, E. M., Barillo, D., Holcomb, J. B., Wade, C. E., & Wolf, S. E. (2010). Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: An autopsy series. Burns, 36(6), 773-779. https://doi.org/10.1016/j.burns.2009.11.007
  20. de Benedictis, F. M., Kerem, E., Chang, A. B., Colin, A. A., Zar, H. J., & Bush, A. (2020). Complicated pneumonia in children. Lancet, 396(10253), 786-798. https://doi.org/10.1016/s0140-6736(20)31550-6
  21. De Clercq, E., & Li, G. D. (2016). Approved antiviral drugs over the past 50years. Clinical Microbiology Reviews, 29(3), 695-747. https://doi.org/10.1128/Cmr.00102-15
  22. Ding, L. M., Jiang, J., Cheng, L., Wang, Y. Q., Zhang, W., Li, D. D., Xu, Z. B., Jiang, J., Gao, L. Z., & Li, Z. N. (2021). Oral administration of Nanoiron sulfide supernatant for the treatment of gallbladder stones with chronic cholecystitis. ACS Applied Bio Materials, 4(5), 3773-3785. https://doi.org/10.1021/acsabm.0c01258
  23. Fang, J., Wang, H., Bao, X. F., Ni, Y. X., Teng, Y., Liu, J. S., Sun, X. L., Sun, Y., Li, H. D., & Zhou, Y. M. (2020). Nanodiamond as efficient peroxidase mimic against periodontal bacterial infection. Carbon, 169, 370-381. https://doi.org/10.1016/j.carbon.2020.07.055
  24. Fedson, D. S. (2018). Influenza, evolution, and the next pandemic. Evolution Medicine and Public Health, 2018(1), 260-269. https://doi.org/10.1093/emph/eoy027
  25. Forssten, S. D., Bjorklund, M., & Ouwehand, A. C. (2010). Streptococcus mutans, caries and simulation models. Nutrients, 2(3), 290-298. https://doi.org/10.3390/nu2030290
  26. Gao, F., Li, X. L., Zhang, T. B., Ghosal, A., Zhang, G. F., Fan, H. M., & Zhao, L. Y. (2020). Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. Journal of Controlled Release, 324, 598-609. https://doi.org/10.1016/j.jconrel.2020.06.003
  27. Gao, F., Shao, T. Y., Yu, Y. P., Xiong, Y. J., & Yang, L. H. (2021). Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nature Communications, 12(1), 745. https://doi.org/10.1038/s41467-021-20965-3
  28. Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., & Yan, X. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9), 577-583. https://doi.org/10.1038/nnano.2007.260
  29. Gao, L. Z., Liu, Y., Kim, D., Li, Y., Hwang, G., Naha, P. C., Cormode, D. P., & Koo, H. (2016). Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 101, 272-284. https://doi.org/10.1016/j.biomaterials.2016.05.051
  30. Gaynes, R., Edwards, J. R., & National Nosocomial Infections Surveillance System. (2005). Overview of nosocomial infections caused by gram-negative bacilli. Clinical Infectious Diseases, 41(6), 848-854. https://doi.org/10.1086/432803
  31. Gong, Y. C., Huang, A. L., Guo, X., Jia, Z., Chen, X., Zhu, X. F., Xia, Y., Liu, J., Xu, Y., & Qin, X. Y. (2021). Selenium-core nanozymes dynamically regulates A beta & neuroinflammation circulation: Augmenting repair of nervous damage. Chemical Engineering Journal, 418, 129345. https://doi.org/10.1016/j.cej.2021.129345
  32. Gotts, J. E., & Matthay, M. A. (2016). Sepsis: Pathophysiology and clinical management. Bmj-British Medical Journal, 353, i1585. https://doi.org/10.1136/bmj.i1585
  33. Gu, Y., Huang, Y., Qiu, Z., Xu, Z., Li, D., Chen, L., Jiang, J., & Gao, L. (2020). Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing. Science China. Life Sciences, 63(1), 68-79. https://doi.org/10.1007/s11427-019-9590-6
  34. Harrison, R. (2004). Physiological roles of xanthine oxidoreductase. Drug Metabolism Reviews, 36(2), 363-375. https://doi.org/10.1081/Dmr-120037569
  35. Hathroubi, S., Servetas, S. L., Windham, I., Merrell, D. S., & Ottemann, K. M. (2018). Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiology and Molecular Biology Reviews, 82(2), e00001-18. https://doi.org/10.1128/MMBR.00001-18
  36. Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., Malfertheiner, P., Graham, D. Y., Wong, V. W. S., Wu, J. C. Y., Chan, F. K. L., Sung, J. J. Y., Kaplan, G. G., & Ng, S. C. (2017). Global prevalence of helicobacter pylori Infection: Systematic review and meta-analysis. Gastroenterology, 153(2), 420-429. https://doi.org/10.1053/j.gastro.2017.04.022
  37. Hou, S., Mahadevegowda, S. H., Lu, D. R., Zhang, K. X., Chan-Park, M. B., & Duan, H. W. (2021). Metabolic labeling mediated targeting and thermal killing of gram-positive bacteria by self-reporting Janus magnetic nanoparticles. Small, 17(2), 2006357. https://doi.org/10.1002/smll.202006357
  38. How, K. Y., Song, K. P., & Chan, K. G. (2016). Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Frontiers in Microbiology, 7, 53. https://doi.org/10.3389/fmicb.2016.00053
  39. Hu, W. C., Younis, M. R., Zhou, Y., Wang, C., & Xia, X. H. (2020). In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small, 16(23), 2000553. https://doi.org/10.1002/smll.202000553
  40. Huang, P., Wang, S. J., Wang, X. S., Shen, G. X., Lin, J., Wang, Z., Guo, S. W., Cui, D. X., Yang, M., & Chen, X. Y. (2015). Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. Journal of Biomedical Nanotechnology, 11(1), 117-125. https://doi.org/10.1166/jbn.2015.2055
  41. Huang, Y., Ren, J., & Qu, X. (2019). Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 119(6), 4357-4412. https://doi.org/10.1021/acs.chemrev.8b00672
  42. Huo, J. J., Jia, Q. Y., Huang, H., Zhang, J., Li, P., Dong, X. C., & Huang, W. (2021). Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chemical Society Reviews, 50(15), 8762-8789. https://doi.org/10.1039/d1cs00074h
  43. Huo, M. F., Wang, L. Y., Wang, Y. W., Chen, Y., & Shi, J. L. (2019). Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano, 13(2), 2643-2653. https://doi.org/10.1021/acsnano.9b00457
  44. Hwang, G., Paula, A. J., Hunter, E. E., Liu, Y., Babeer, A., Karabucak, B., Stebe, K., Kumar, V., Steager, E., & Koo, H. (2019). Catalytic antimicrobial robots for biofilm eradication. Science Robotics, 4(29), eaaw2388. https://doi.org/10.1126/scirobotics.aaw2388
  45. Jain, S., Dongave, S. M., Date, T., Kushwah, V., Mahajan, R. R., Pujara, N., & Kumeria, T. (2019). Succinylated beta-lactoglobuline-functionalized multiwalled carbon nanotubes with improved colloidal stability and biocompatibility. ACS Biomaterials Science & Engineering, 5(7), 3361-3372. https://doi.org/10.1021/acsbiomaterials.9b00268
  46. Jia, Z. R., Lv, X. H., Hou, Y., Wang, K. F., Ren, F. Z., Xu, D. G., Wang, Q., Fan, K. L., Xie, C. M., & Lu, X. (2021). Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioactive Materials, 6(9), 2676-2687. https://doi.org/10.1016/j.bioactmat.2021.01.033
  47. Kalwar, K., Xi, J. Q., Dandan, L., & Gao, L. Z. (2021). Fabrication of PAN/FeNPs electrospun nanofibers: Nanozyme and an efficient antimicrobial agent. Materials Today Communications, 26, 102168. https://doi.org/10.1016/j.mtcomm.2021.102168
  48. Khan, S., Sharifi, M., Bloukh, S. H., Edis, Z., Siddique, R., & Falahati, M. (2021). In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta, 224, 121805. https://doi.org/10.1016/j.talanta.2020.121805
  49. Kinch, M. S., Patridge, E., Plummer, M., & Hoyer, D. (2014). An analysis of FDA-approved drugs for infectious disease: Antibacterial agents. Drug Discovery Today, 19(9), 1283-1287. https://doi.org/10.1016/j.drudis.2014.07.005
  50. Klebanoff, S. J., & Rosen, H. (1978). The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes. Ciba Foundation symposium, 65, 263-284. https://doi.org/10.1002/9780470715413.ch15
  51. Knodler, L. A., & Elfenbein, J. R. (2019). Salmonella enterica. Trends in Microbiology, 27(11), 964-965. https://doi.org/10.1016/j.tim.2019.05.002
  52. Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: From targets to networks. Nature Reviews Microbiology, 8(6), 423-435. https://doi.org/10.1038/nrmicro2333
  53. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130(5), 797-810. https://doi.org/10.1016/j.cell.2007.06.049
  54. Koyappayil, A., Kim, H. T., & Lee, M. H. (2021). Laccase-like properties of coral-like silver citrate micro-structures for the degradation and determination of phenolic pollutants and adrenaline. Journal of Hazardous Materials, 412, 125211. https://doi.org/10.1016/j.jhazmat.2021.125211
  55. Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(12 Suppl), S122-S129. https://doi.org/10.1038/nm1145
  56. Li, D. D., Guo, Q. Q., Ding, L. M., Zhang, W., Cheng, L., Wang, Y. Q., Xu, Z. B., Wang, H. H., & Gao, L. Z. (2020). Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral pH for combating burn infections. ChemBioChem, 21(18), 2620-2627. https://doi.org/10.1002/cbic.202000066
  57. Li, H. M., Yin, D., Li, W., Tang, Q., Zou, L., & Peng, Q. (2021). Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids and Surfaces B-Biointerfaces, 199, 111502. https://doi.org/10.1016/j.colsurfb.2020.111502
  58. Li, S. S., Shang, L., Xu, B. L., Wang, S. H., Gu, K., Wu, Q. Y., Sun, Y., Zhang, Q. H., Yang, H. L., Zhang, F. R., Gu, L., Zhang, T. R., & Liu, H. Y. (2019). A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angewandte Chemie (International Ed. in English), 58(36), 12624-12631. https://doi.org/10.1002/anie.201904751
  59. Li, X., Wu, X. M., Yuan, T., Zhu, J. R., & Yang, Y. L. (2021). Influence of the iodine content of nitrogen- and iodine-doped carbon dots as a peroxidase mimetic nanozyme exhibiting antifungal activity against C. albicans. Biochemical Engineering Journal, 175, 108139. https://doi.org/10.1016/j.bej.2021.108139
  60. Li, Y., Ma, W. S., Sun, J., Lin, M., Niu, Y. S., Yang, X. C., & Xu, Y. H. (2020). Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. Carbon, 159, 149-160. https://doi.org/10.1016/j.carbon.2019.11.093
  61. Liang, M. J., Wang, Y. B., Ma, K., Yu, S. S., Chen, Y. Y., Deng, Z., Liu, Y., & Wang, F. (2020). Engineering inorganic nanoflares with elaborate enzymatic specificity and efficiency for versatile biofilm eradication. Small, 16(41), 2002348. https://doi.org/10.1002/smll.202002348
  62. Liu, S. J., Dou, L. N., Yao, X. L., Zhang, W. T., Zhao, M., Yin, X. C., Sun, J., Zhan, D. H., & Wang, J. H. (2020). Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range. Biosensors and Bioelectronics, 169, 112610. https://doi.org/10.1016/j.bios.2020.112610
  63. Liu, X., Gao, Y., Chandrawati, R., & Hosta-Rigau, L. (2019). Therapeutic applications of multifunctional nanozymes. Nanoscale, 11(44), 21046-21060. https://doi.org/10.1039/c9nr06596b
  64. Liu, Y., Huang, Y., Kim, D., Ren, Z., Oh, M. J., Cormode, D. P., Hara, A. T., Zero, D. T., & Koo, H. (2021). Ferumoxytol nanoparticles target biofilms causing tooth decay in the human mouth. Nano Letters, 21, 9442-9449. https://doi.org/10.1021/acs.nanolett.1c02702
  65. Liu, Y. N., Lin, A. G., Liu, J. W., Chen, X., Zhu, X. F., Gong, Y. C., Yuan, G. L., Chen, L. M., & Liu, J. (2019). Enzyme-responsive mesoporous ruthenium for combined chemo-photothermal therapy of drug-resistant bacteria. ACS Applied Materials & Interfaces, 11(30), 26590-26606. https://doi.org/10.1021/acsami.9b07866
  66. Liu, Y. Q., Mao, Y. Y., Xu, E. Q., Jia, H. M., Zhang, S., Dawson, V. L., Dawson, T. M., Li, Y. M., Zheng, Z., He, W. W., & Mao, X. B. (2021). Nanozyme scavenging ROS for prevention of pathologic alpha-synuclein transmission in Parkinson's disease. Nano Today, 36, 101027. https://doi.org/10.1016/j.nantod.2020.101027
  67. Ma, W. S., Zhang, T. T., Li, R. G., Niu, Y. S., Yang, X. C., Liu, J., Xu, Y. H., & Li, C. M. (2020). Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. Journal of Colloid and Interface Science, 559, 313-323. https://doi.org/10.1016/j.jcis.2019.09.040
  68. Mancini, N., Carletti, S., Ghidoli, N., Cichero, P., Burioni, R., & Clementi, M. (2010). The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clinical Microbiology Reviews, 23(1), 235-251. https://doi.org/10.1128/cmr.00043-09
  69. Marshall, B. J. (2001). One hundred years of discovery and rediscovery of helicobacter pylori and its association with peptic ulcer disease. In H. L. T. Mobley, G. L. Mendz, & S. L. Hazell (Eds.), Helicobacter pylori: Physiology and genetics. ASM Press. https://www.ncbi.nlm.nih.gov/pubmed/21290733
  70. Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., & Imai, S. (2005). Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. Journal of Infection and Chemotherapy, 11(5), 211-219. https://doi.org/10.1007/s10156-005-0408-9
  71. Mei, L. Q., Zhu, S., Liu, Y. P., Yin, W. Y., Gu, Z. J., & Zhao, Y. L. (2021). An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 418, 129431. https://doi.org/10.1016/j.cej.2021.129431
  72. Meng, X. Q., Li, D. D., Chen, L., He, H. L., Wang, Q., Hong, C. Y., He, J. Y., Guo, X. F., Yang, Y. L., Jiang, B., Nie, G. H., Yan, X. Y., Gao, L. Z., & Fan, K. L. (2021). High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano, 15(3), 5735-5751. https://doi.org/10.1021/acsnano.1c01248
  73. Miao, Z. H., Jiang, S. S., Ding, M. L., Sun, S. Y., Ma, Y., Younis, M. R., He, G., Wang, J. G., Lin, J., Cao, Z., Huang, P., & Zha, Z. B. (2020). Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Letters, 20(5), 3079-3089. https://doi.org/10.1021/acs.nanolett.9b05035
  74. Mizrahi, M., Friedman-Levi, Y., Larush, L., Frid, K., Binyamin, O., Dori, D., Fainstein, N., Ovadia, H., Ben-Hur, T., Magdassi, S., & Gabizon, R. (2014). Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: The case of genetic CJD. Nanomedicine-Nanotechnology Biology and Medicine, 10(6), 1353-1363. https://doi.org/10.1016/j.nano.2014.03.015
  75. Molina, B., Pogossian, A., De Moreuil, C., Rouvière, B., & Le Berre, R. (2020). Infectious myositis. La Revue de Médecine Interne, 41(4), 241-249. https://doi.org/10.1016/j.revmed.2020.02.006
  76. Musgrove, R. E., Helwig, M., Bae, E.-J., Aboutalebi, H., Lee, S.-J., Ulusoy, A., & Di Monte, D. A. (2019). Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. The Journal of Clinical Investigation, 129(9), 3738-3753. https://doi.org/10.1172/JCI127330
  77. Nagvenkar, A. P., & Gedanken, A. (2016). Cu0.89Zn0.11O, a new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Applied Materials & Interfaces, 8(34), 22301-22308. https://doi.org/10.1021/acsami.6b05354
  78. Norbury, W., Herndon, D. N., Tanksley, J., Jeschke, M. G., Finnerty, C. C., & Behalf of the Scientific Study Committee of the Surgical Infection Society. (2016). Infection in burns. Surgical Infections, 17(2), 250-255. https://doi.org/10.1089/sur.2013.134
  79. Peres, M. A., Macpherson, L. M. D., Weyant, R. J., Daly, B., Venturelli, R., Mathur, M. R., Listl, L., Celeste, R. K., Guarnizo-Herreno, C. C., Kearns, C., Benzian, H., Allison, P., & Watt, R. G. (2019). Oral diseases: A global public health challenge. Lancet, 394(10194), 249-260. https://doi.org/10.1016/S0140-6736(19)31146-8
  80. Perlin, D. S., Rautemaa-Richardson, R., & Alastruey-Izquierdo, A. (2017). The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infectious Diseases, 17(12), E383-E392. https://doi.org/10.1016/S1473-3099(17)30316-X
  81. Pörner, D., Von Vietinghoff, S., Nattermann, J., Strassburg, C. P., & Lutz, P. (2021). Advances in the pharmacological management of bacterial peritonitis. Expert Opinion on Pharmacotherapy, 22(12), 1567-1578. https://doi.org/10.1080/14656566.2021.1915288
  82. Prusiner, S. B., Woerman, A. L., Mordes, D. A., Watts, J. C., Rampersaud, R., Berry, D. B., Patel, S., Oehler, A., Lowe, J. K., Kravitz, S. N., Geschwind, D. H., Glidden, D. V., Halliday, G. M., Middleton, L. T., Gentleman, S. M., Grinberg, L. T., & Giles, K. (2015). Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proceedings of theNational Academy of Sciences of the United States of America, 112(38), E5308-E5317. https://doi.org/10.1073/pnas.1514475112
  83. Qin, T., Ma, R. N., Yin, Y. Y., Miao, X. Y., Chen, S. J., Fan, K. L., Xi, J. Q., Liu, Q., Gu, Y. H., Yin, Y. C., Hu, J., Liu, X. F., Peng, D. X., & Gao, L. Z. (2019). Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics, 9(23), 6920-6935. https://doi.org/10.7150/thno.35826
  84. Qin, T., Ma, S., Miao, X. Y., Tang, Y., Huangfu, D. D., Wang, J. Y., Jiang, J., Xu, N., Yin, Y. C., Chen, S. J., Liu, X. F., Yin, Y. Y., Peng, D. X., & Gao, L. Z. (2020). Mucosal vaccination for influenza protection enhanced by catalytic immune-adjuvant. Advanced Science, 7(18), ARTN 2000771. https://doi.org/10.1002/advs.202000771
  85. Qiu, H., Pu, F., Liu, Z. W., Liu, X. M., Dong, K., Liu, C. Q., Ren, J. S., & Qu, X. G. (2020). Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Research, 13(2), 496-502. https://doi.org/10.1007/s12274-020-2636-9
  86. Sang, Y. J., Li, W., Liu, H., Zhang, L., Wang, H., Liu, Z. W., Ren, J.S., & Qu, X. G. (2019). Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Advanced Functional Materials, 29(22), 1900518. https://doi.org/10.1002/adfm.201900518
  87. Scudamore, O., & Ciossek, T. (2018). Increased oxidative stress exacerbates α-synuclein aggregation in vivo. Journal of Neuropathology & Experimental Neurology, 77(6), 443-453. https://doi.org/10.1093/jnen/nly024
  88. Segal, B. H., Sakamoto, N., Patel, M., Maemura, K., Klein, A. S., Holland, S. M., & Bulkley, G. B. (2000). Xanthine oxidase contributes to host defense against Burkholderia cepacia in the p47(phox−/−) mouse model of chronic granulomatous disease. Infection and Immunity, 68(4), 2374-2378. https://doi.org/10.1128/Iai.68.4.2374-2378.2000
  89. Shan, J. Y., Li, X., Yang, K. L., Xiu, W. J., Wen, Q. R., Zhang, Y. Q., Yuwen, L. H., Weng, L. X., Teng, Z. G., & Wang, L. H. (2019). Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano, 13(12), 13797-13808. https://doi.org/10.1021/acsnano.9b03868
  90. Shan, J. Y., Yang, K. L., Xiu, W. J., Qiu, Q., Dai, S. L., Yuwen, L. H., Weng, L. X., Teng, Z. G., & Wang, L. H. (2020). Cu(2)MoS(4)Nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small, 16(40), 2001099. https://doi.org/10.1002/smll.202001099
  91. Sharma, S., Chakraborty, N., Jha, D., Gautam, H. K., & Roy, I. (2020). Robust dual modality antibacterial action using silver-Prussian blue nanoscale coordination polymer. Materials Science & Engineering C-Materials for Biological Applications, 113, 110982. https://doi.org/10.1016/j.msec.2020.110982
  92. Shen, J., Rees, T. W., Zhou, Z., Yang, S., Ji, L., & Chao, H. (2020). A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy. Biomaterials, 251, 120079. https://doi.org/10.1016/j.biomaterials.2020.120079
  93. Shen, X. Y., Ma, R. N., Huang, Y. X., Chen, L., Xu, Z. B., Li, D. D., Meng, X. Q., Fan, K. L., Xi, J. Q., Yan, X. Y., Koo, H., Yang, J., Jiang, J., & Gao, L. Z. (2020). Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy. Nano Today, 35, 100981. https://doi.org/10.1016/j.nantod.2020.100981
  94. Shen, Y. R., Xiao, Y. Q., Zhang, S., Wu, S., Gao, L. Z., & Shi, S. R. (2020). Fe3O4 nanoparticles attenuated Salmonella infection in chicken liver through reactive oxygen and autophagy via PI3K/Akt/mTOR signaling. Frontiers in Physiology, 10, 1580. https://doi.org/10.3389/fphys.2019.01580
  95. Shi, S. R., Wu, S., Shen, Y. R., Zhang, S., Xiao, Y. Q., He, X., Gong, J. S., Farnell, Y., Tang, Y., Huang, Y. X., & Gao, L. Z. (2018). Iron oxide nanozyme suppresses intracellular Salmonella enteritidis growth and alleviates infection in vivo. Theranostics, 8(22), 6149-6162. https://doi.org/10.7150/thno.29303
  96. Sideri, T. C., Stojanovski, K., Tuite, M. F., & Grant, C. M. (2010). Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6394-6399. https://doi.org/10.1073/pnas.1000347107
  97. Signat, B., Roques, C., Poulet, P., & Duffaut, D. (2011). Fusobacterium nucleatum in Periodontal Health and Disease. Current Issues in Molecular Biology, 13, 25-36. https://doi.org/10.21775/cimb.013.025
  98. Singh, S., Ghosh, S., Pal, V. K., Munshi, M., Shekar, P., Narasimha Murthy, D. T., Mugesh, G., & Singh, A. (2021). Antioxidant nanozyme counteracts HIV-1 by modulating intracellular redox potential. EMBO Molecular Medicine, 13(5), e13314. https://doi.org/10.15252/emmm.202013314
  99. Stendahl, O., Coble, B. I., Dahlgren, C., Hed, J., & Molin, L. (1984). Myeloperoxidase modulates the phagocytic-activity of polymorphonuclear neutrophil leukocytes-Studies with cells from a myeloperoxidase-deficient patient. Journal of Clinical Investigation, 73(2), 366-373. https://doi.org/10.1172/Jci111221
  100. Sun, D., Pang, X., Cheng, Y., Ming, J., Xiang, S. J., Zhang, C., Lv, P., Chu, C. C., Chen, X. L., Liu, G., & Zheng, N. F. (2020). Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano, 14(2), 2063-2076. https://doi.org/10.1021/acsnano.9b08667
  101. Sun, X. Y., Dong, M. N., Guo, Z. R., Zhang, H., Wang, J., Jia, P., Bu, P., Liu, Y. N., Li, L. H., & Wang, L. (2021). Multifunctional chitosan-copper-gallic acid based antibacterial nanocomposite wound dressing. International Journal of Biological Macromolecules, 167, 10-22. https://doi.org/10.1016/j.ijbiomac.2020.11.153
  102. Tempro, P. J., Jandinski, J., & Murray, P. (1994). Periodontal disease-associated bacteria in the microflora of children with aids. Journal of Dental Research, 73, 422-422. https://doi.org/10.1177/0022034594073S102
  103. Tian, Z. M., Li, J., Zhang, Z. Y., Gao, W., Zhou, X. M., & Qu, Y. Q. (2015). Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials, 59, 116-124. https://doi.org/10.1016/j.biomaterials.2015.04.039
  104. Tripathi, K. M., Ahn, H. T., Chung, M., Le, X. A., Saini, D., Bhati, A., Sonkar, S. K., & Kim, M. I. (2020). N, S, and P-Co-doped carbon quantum dots: Intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomaterials Science & Engineering, 6(10), 5527-5537. https://doi.org/10.1021/acsbiomaterials.0c00831
  105. Vanamala, K., Tatiparti, K., Bhise, K., Sau, S., Scheetz, M. H., Rybak, M. J., Andes, D., & Iyer, A. K. (2020). Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discovery Today, 26(1), 31-43. https://doi.org/10.1016/j.drudis.2020.10.011
  106. Wambaugh, M. A., Denham, S. T., Ayala, M., Brammer, B., Stonhill, M. A., & Brown, J. C. (2020). Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. eLife, 9, e54160. https://doi.org/10.7554/eLife.54160
  107. Wang, D., Zhang, B., Ding, H., Liu, D., Xiang, J., Gao, X. J., Chen, X. H., Li, Z. J., Yang, L., Duan, H. X., Zheng, J. Y., Liu, L., Jiang, B., Liu, Y., Xie, N., Zhang, H., Yan, X. Y., Fan, K. L., & Nie, G. H. (2021). TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today, 40, 101243. https://doi.org/10.1016/j.nantod.2021.101243
  108. Wang, H., Fu, W., Chen, Y., Xue, F., & Shan, G. (2021). ZIF-67-derived Co3O4 hollow nanocage with efficient peroxidase mimicking characteristic for sensitive colorimetric biosensing of dopamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 119006. https://doi.org/10.1016/j.saa.2020.119006
  109. Wang, J. X., Wang, L. T., Pan, J., Zhao, J. H., Tang, J., Jiang, D. J., Hu, P., Jia, W. T., & Shi, J. L. (2021). Magneto-based synergetic therapy for implant-associated infections via biofilm disruption and innate immunity regulation. Advanced Science (Weinheim), 8(6), 2004010. https://doi.org/10.1002/advs.202004010
  110. Wang, J., Wang, Y., Zhang, D., & Chen, C. (2020). Intrinsic oxidase-like nanoenzyme Co4S3/Co(OH)(2) hybrid nanotubes with broad-spectrum antibacterial activity. ACS Applied Materials & Interfaces, 12(26), 29614-29624. https://doi.org/10.1021/acsami.0c05141
  111. Wang, L. W., Gao, F. N., Wang, A. Z., Chen, X. Y., Li, H., Zhang, X., Zheng, H., Ji, R., Li, B., Yu, X., Liu, J., Gu, Z. J., Chen, F. L., & Chen, C. Y. (2020). Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Advanced Materials, 32(48), 2005423. https://doi.org/10.1002/adma.202005423
  112. Wang, N., Li, W. Q., Ren, Y. D., Duan, J. Z., Zhai, X. F., Guan, F., Wang, L. F., & Hou, B. R. (2021). Investigating the properties of nano core-shell CeO2@C as haloperoxidase mimicry catalyst for antifouling applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608, 125592. https://doi.org/10.1016/j.colsurfa.2020.125592
  113. Wang, S. Q., Zheng, H., Zhou, L., Cheng, F., Liu, Z., Zhang, H. P., Wang, L. L., & Zhang, Q. Y. (2020). Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Letters, 20(7), 5149-5158. https://doi.org/10.1021/acs.nanolett.0c01371
  114. Wang, T., Bai, Q., Zhu, Z. L., Xiao, H. L., Jiang, F. Y., Du, F. L., Yu, W. W., Liu, M. H., & Sui, N. (2021). Graphdiyne-supported palladium-iron nanosheets: A dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chemical Engineering Journal, 413, 127537. https://doi.org/10.1016/j.cej.2020.127537
  115. Wang, T., Zhang, X., Mei, L. Q., Ma, D. Q., Liao, Y., Zu, Y., Xu, P., Yin, W. Y., & Gu, Z. J. (2020). A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. Nanoscale, 12(15), 8415-8424. https://doi.org/10.1039/D0NR00192A
  116. Wang, W. S., Li, B. L., Yang, H. L., Lin, Z. F., Chen, L. L., Li, Z., Ge, J. Y., Zhang, T., Xia, H., Li, L. H., & Lu, Y. (2020). Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Research, 13(8), 2156-2164. https://doi.org/10.1007/s12274-020-2824-7
  117. Wang, X., Hu, Y., & Wei, H. (2016). Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorganic Chemistry Frontiers, 3(1), 41-60. https://doi.org/10.1039/C5QI00240K
  118. Wang, X. W., Fan, L. X., Cheng, L., Sun, Y. B., Wang, X. Y., Zhong, X. Y., Shi, Q. Q., Gong, F., Yang, Y., Ma, Y., Miao, Z. H., & Zha, Z. B. (2020). Biodegradable nickel disulfide nanozymes with GSH-depleting function for high-efficiency photothermal-catalytic antibacterial therapy. Iscience, 23(7), 101281. https://doi.org/10.1016/j.isci.2020.101281
  119. Wang, Y., Beekman, J., Hew, J., Jackson, S., Issler-Fisher, A. C., Parungao, R., … Maitz, P. K. M. (2018). Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Advanced Drug Delivery Reviews, 123, 3-17. https://doi.org/10.1016/j.addr.2017.09.018
  120. Wang, Y., Chen, C., Zhang, D., & Wang, J. (2020). Bifunctionalized novel Co-V MMO nanowires: Intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Applied Catalysis B-Environmental, 261, 118256. https://doi.org/10.1016/j.apcatb.2019.118256
  121. Wang, Y., Yang, Y., Shi, Y., Song, H., & Yu, C. (2020). Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Advanced Materials, 32(18), e1904106. https://doi.org/10.1002/adma.201904106
  122. Wang, Y. Q., Shen, X. Y., Ma, S., Guo, Q. Q., Zhang, W., Cheng, L., Ding, L. M., Xu, Z. B., Jiang, J., & Gao, L. Z. (2020). Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria. Biomaterials Science, 8(9), 2447-2458. https://doi.org/10.1039/c9bm01889a
  123. Wang, Z., Zhang, R., Yan, X., & Fan, K. (2020). Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Materials Today, 41, 81-119. https://doi.org/10.1016/j.mattod.2020.08.020
  124. Wei, F., Cui, X., Wang, Z., Dong, C., Li, J., & Han, X. (2021). Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chemical Engineering Journal, 408, 127240. https://doi.org/10.1016/j.cej.2020.127240
  125. Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060-6093. https://doi.org/10.1039/c3cs35486e
  126. Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA, 324(8), 782-793. https://doi.org/10.1001/jama.2020.12839
  127. Winterbourn, C. C., Hampton, M. B., Livesey, J. H., & Kettle, A. J. (2006). Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome-Implications for microbial killing. Journal of Biological Chemistry, 281(52), 39860-39869. https://doi.org/10.1074/jbc.M605898200
  128. Wu, J. J. X., Wang, X. Y., Wang, Q., Lou, Z. P., Li, S. R., Zhu, Y. Y., Qin, L., & Wei, H. (2019). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chemical Society Reviews, 48(4), 1004-1076. https://doi.org/10.1039/c8cs00457a
  129. Wu, R. F., Chong, Y., Fang, G., Jiang, X. M., Pan, Y., Chen, C. Y., Yin, J. J., & Ge, C. C. (2018). Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: Implication for wound healing. Advanced Functional Materials, 28(28), 1801484. https://doi.org/10.1002/adfm.201801484
  130. Xi, J. Q., An, L. F., Huang, Y. L., Jiang, J., Wang, Y. Q., Wei, G., Xu, Z. L., Fan, L., & Gao, L. Z. (2021). Ultrasmall FeS2 nanoparticles-decorated carbon spheres with laser-mediated ferrous ion release for antibacterial therapy. Small, 17(13), e2005473. https://doi.org/10.1002/smll.202005473
  131. Xi, J. Q., Wei, G., An, L. f., Xu, Z. B., Xu, Z. l., Fan, L., & Gao, L. Z. (2019). Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Letters, 19(11), 7645-7654. https://doi.org/10.1021/acs.nanolett.9b02242
  132. Xi, J. Q., An, L. F., Wei, G., Huang, Y. L., Li, D. D., Fan, L., & Gao, L. Z. (2020). Photolysis of methicillin-resistant Staphylococcus aureus using Cu-doped carbon spheres. Biomaterials Science, 8(22), 6225-6234. https://doi.org/10.1039/d0bm01239d
  133. Xi, J. Q., Wei, G., Wu, Q. W., Xu, Z. L., Liu, Y. W., Han, J., Fan, L., & Gao, L. Z. (2019). Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomaterials Science, 7(10), 4131-4141. https://doi.org/10.1039/c9bm00705a
  134. Xin, S. U., Fan, Y. U., Lizeng, G. A. O., & Xiaofang, Z. (2020). Effect and mechanism of nano-iron sulfide on murine infected eczema. Journal of Yangzhou University (Agricultural and Life Science Edition), 41(4), 64-70. https://doi.org/10.16872/j.cnki.1671-4652.2020.04.011
  135. Xu, B. L., Wang, H., Wang, W. W., Gao, L. Z., Li, S. S., Pan, X. T., Wang, H. Y., Yang, H. L., Meng, X. Q., Wu, Q. W., Zheng, L. R., Chen, S. M., Shi, X. H., Fan, K. L., Yan, X. Y., & Liu, H. Y. (2019). A single-atom nanozyme for wound disinfection applications. Angewandte Chemie-International Edition, 58(15), 4911-4916. https://doi.org/10.1002/anie.201813994
  136. Xu, M. R., Hu, Y., Xiao, Y., Zhang, Y. Y., Sun, K. L., Wu, T., Lv, N., Wang, W. S., Ding, W. P., Li, F. F., Qiu, B. S., & Li, J. B. (2020). Near-infrared-controlled nanoplatform exploiting photothermal promotion of peroxidase-like and OXD-like activities for potent antibacterial and anti-biofilm therapies. ACS Applied Materials & Interfaces, 12(45), 50260-50274. https://doi.org/10.1021/acsami.0c14451
  137. Xu, Z. B., Qiu, Z. Y., Liu, Q., Huang, Y. X., Li, D. D., Shen, X. G., Fan, K. L., Xi, J. Q., Gu, Y. H., Tang, Y., Jiang, J., Xu, J. L., He, J. Z., Gao, X. F., Liu, Y., Koo, H., Yan, X. Y., & Gao, L. Z. (2018). Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nature Communications, 9(1), 3713. https://doi.org/10.1038/s41467-018-06164-7
  138. Yang, H. K., Xue, W., Liu, M. J., Yu, K., & Yu, W. Z. (2020). Carbon doped Fe3O4 peroxidase-like nanozyme for mitigating the membrane fouling by NOM at neutral pH. Water Research, 174, 115637. https://doi.org/10.1016/j.watres.2020.115637
  139. Yang, H. Y., He, Q. Y., Chen, Y. S., Shen, D., Xiao, H. X., Eremin, S. A., Cui, X. P., & Zhao, S. Q. (2020). Platinum nanoflowers with peroxidase-like property in a dual immunoassay for dehydroepiandrosterone. Microchimica Acta, 187(11), 592. https://doi.org/10.1007/s00604-020-04528-9
  140. Yim, G., Kim, C. Y., Kang, S., Min, D. H., Kang, K., & Jang, H. (2020). Intrinsic peroxidase-mimicking Ir nanoplates for nanozymatic anticancer and antibacterial treatment. ACS Applied Materials & Interfaces, 12(37), 41062-41070. https://doi.org/10.1021/acsami.0c10981
  141. Yuan, F. Z., Yang, L. F., Zhang, Z. M., Wu, W. Y., Zhou, X. M., Yin, X. M., & Zhao, D. M. (2013). Cellular prion protein (PrPC) of the neuron cell transformed to a PK-resistant protein under oxidative stress, comprising main mitochondrial damage in prion diseases. Journal of Molecular Neuroscience, 51(1), 219-224. https://doi.org/10.1007/s12031-013-0008-6
  142. Zhang, C., Du, C. J., Liao, J. Y., Gu, Y. H., Gong, Y. Z., Pei, J., Gu, H. W., Yin, D., Gao, L. Z., & Pan, Y. (2019). Synthesis of magnetite hybrid nanocomplexes to eliminate bacteria and enhance biofilm disruption. Biomaterials Science, 7(7), 2833-2840. https://doi.org/10.1039/c9bm00057g
  143. Zhang, J. X., Chen, Z. T., Kong, J. L., Liang, Y. L., Chen, K., Chang, Y. A., Yuan, H., Wang, Y. J., Liang, H. J., Li, J. C., Mao, M. R., Li, J., & Xing,, G. M. (2020). Fullerenol nanoparticles eradicate helicobacter pylori via pH-responsive peroxidase activity. ACS Applied Materials & Interfaces. 12(26), 29013-29023. https://doi.org/10.1021/acsami.0c05509
  144. Zhang, L., Liu, Z. W., Deng, Q. Q., Sang, Y. J., Dong, K., Ren, J. S., & Qu, X. G. (2021). Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angewandte Chemie-International Edition, 60(7), 3469-3474. https://doi.org/10.1002/anie.202012487
  145. Zhang, L. F., Zhang, L., Deng, H., Li, H., Tang, W. T., Guan, L. Y., Qiu, Y., Donovan, M. J., Chen, Z., & Tan, W. H. (2021). In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of helicobacter pylori. Nature Communications, 12(1), 2002. https://doi.org/10.1038/s41467-021-22286-x
  146. Zhang, S. F., Liu, Y., Sun, S., Wang, J. Y., Li, Q. F., Yan, R. J., Gao, Y. L., Liu, H. L., Liu, S. J., Hao, W. T., Dai, H. T., Liu, C. L., Sun, Y. M., Long, W., Mu, X. Y., & Zhang, X. D. (2021). Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for brain trauma. Theranostics, 11(6), 2806-2821. https://doi.org/10.7150/thno.51912
  147. Zhang, W. D., Zhao, Y. P., Wang, W. H., Peng, J. F., Li, Y. M., Shangguan, Y. T., Ouyang, G. G., Xu, M. Y., Wang, S. P., Wei, J. J., Wei, H. Y., Li, W. W., & Yang, H. Y. (2020). Colloidal surface engineering: Growth of layered double hydroxides with intrinsic oxidase-mimicking activities to fight against bacterial infection in wound healing. Advanced Healthcare Materials, 9(17), 2000092. https://doi.org/10.1002/adhm.202000092
  148. Zhang, Y., Jin, Y., Cui, H., Yan, X., & Fan, K. (2020). Nanozyme-based catalytic theranostics. RSC Advances, 10(1), 10-20. https://doi.org/10.1039/C9RA09021E
  149. Zhang, Y., Li, D. X., Tan, J. S., Chang, Z. S., Liu, X. Y., Ma, W. S., & Xu, Y. H. (2021). Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small, 17(1), e2005739. https://doi.org/10.1002/smll.202005739
  150. Zhang, Y., Ren, W., Luo, H. Q., & Li, N. B. (2016). Label-free cascade amplification strategy for sensitive visual detection of thrombin based on target-triggered hybridization chain reaction-mediated in situ generation of DNAzymes and Pt nanochains. Biosensors & Bioelectronics, 80, 463-470. https://doi.org/10.1016/j.bios.2016.02.016
  151. Zhao, S., Duan, H., Yang, Y., Yan, X., & Fan, K. (2019). Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria. Nano Letters, 19(12), 8887-8895. https://doi.org/10.1021/acs.nanolett.9b03774
  152. Zhao, Y. J., Ding, B. B., Xiao, X., Jiang, F., Wang, M. F., Hou, Z. F., Xing, B. G., Teng, B., Cheng, Z. Y., Ma, P. A., & Lin, J. (2020). Virus-like Fe3O4@Bi2S3 nanozymes with resistance-free apoptotic hyperthermia-augmented nanozymitic activity for enhanced synergetic cancer therapy. ACS Applied Materials & Interfaces, 12(10), 11320-11328. https://doi.org/10.1021/acsami.9b20661
  153. Zhen, W. Y., Liu, Y., Lin, L., Bai, J., Jia, X. D., Tian, H. Y., & Jiang, X. (2018). BSA-IrO2: Catalase-like nanoparticles with high photothermal conversion efficiency and a high X-ray absorption coefficient for anti-inflammation and antitumor theranostics. Angewandte Chemie-International Edition, 57(32), 10309-10313. https://doi.org/10.1002/anie.201804466
  154. Zhou, J. R., Krishnan, N., Jiang, Y., Fang, R. H., & Zhang, L. F. (2021). Nanotechnology for virus treatment nanotechnology for virus treatment. Nano Today, 36, 101031. https://doi.org/10.1016/j.nantod.2020.101031

MeSH Term

Anti-Bacterial Agents
Anti-Infective Agents
Catalysis
Nanomedicine
Nanostructures

Chemicals

Anti-Bacterial Agents
Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0nanozymesenzymaticenzymesapplicationantimicrobialantibacterialantiviralantifungaltherapyNanozymesnanomaterialsenzyme-likecharacteristicscatalyzeconversionenzymesubstratesfollowkineticsphysiologicalconditionsnewgenerationartificialprovidealternativeapproachesuponcatalysisComparednaturaladvantagessimplepreparationgoodstabilitylowcostmakespromisingmanyfieldsinfectiontreatmentManystudiesreportedcapablekillingnumberpathogenicbacteriaresistancefungiwellvirusesshowngreatcurativeeffectsdiseasescausedpathogensHereinsummarizetherapiesoutlineissuesneedingresolutionfuturearticlecategorizedunder:TherapeuticApproachesDrugDiscovery>NanomedicineInfectiousDiseaseCatalyticusingcatalytic

Similar Articles

Cited By