Species- and Caste-Specific Gut Metabolomes in Fungus-Farming Termites.

Nanna Hjort Vidkjær, Suzanne Schmidt, Haofu Hu, Kasun H Bodawatta, Christine Beemelmanns, Michael Poulsen
Author Information
  1. Nanna Hjort Vidkjær: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark. ORCID
  2. Suzanne Schmidt: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark. ORCID
  3. Haofu Hu: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
  4. Kasun H Bodawatta: Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark. ORCID
  5. Christine Beemelmanns: Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany. ORCID
  6. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark. ORCID

Abstract

Fungus-farming termites host gut microbial communities that contribute to the pre-digestion of plant biomass for manuring the fungal mutualist, and potentially to the production of defensive compounds that suppress antagonists. Termite colonies are characterized by complex division of labor and differences in diet between termite size (minor and major) and morphological (worker and soldier) castes, and this extends to the composition of their gut microbial communities. We hypothesized that gut metabolomes should mirror these differences and tested this through untargeted LC-MS/MS analyses of three South African species of fungus-farming termites. We found distinct metabolomes between species and across castes, especially between soldiers and workers. Primary metabolites dominate the metabolomes and the high number of overlapping features with the mutualistic fungus and plant material show distinct impacts of diet and the environment. The identification of a few bioactive compounds of likely microbial origin underlines the potential for compound discovery among the many unannotated features. Our untargeted approach provides a first glimpse into the complex gut metabolomes and our dereplication suggests the presence of bioactive compounds with potential defensive roles to be targeted in future studies.

Keywords

References

  1. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  2. Sci Rep. 2013 Nov 19;3:3250 [PMID: 24248063]
  3. Insects. 2019 Mar 28;10(4): [PMID: 30925664]
  4. Front Plant Sci. 2012 Jun 11;3:120 [PMID: 22701462]
  5. Eur J Biochem. 1999 Sep;264(3):785-9 [PMID: 10491124]
  6. BMC Evol Biol. 2020 Dec 9;20(1):163 [PMID: 33297950]
  7. Sci Rep. 2019 Jun 19;9(1):8819 [PMID: 31217550]
  8. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  9. Environ Microbiol. 2015 Aug;17(8):2562-72 [PMID: 25581852]
  10. Nat Rev Microbiol. 2008 Feb;6(2):111-20 [PMID: 18197168]
  11. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W652-60 [PMID: 19429898]
  12. J Chem Ecol. 2020 Aug;46(8):735-744 [PMID: 31853814]
  13. Front Plant Sci. 2015 Sep 14;6:700 [PMID: 26442016]
  14. PLoS Biol. 2017 Dec 12;15(12):e2003467 [PMID: 29232373]
  15. Annu Rev Entomol. 2018 Jan 7;63:105-123 [PMID: 28945976]
  16. J Agric Food Chem. 2009 Aug 12;57(15):6485-501 [PMID: 19580283]
  17. Insects. 2019 Dec 08;10(12): [PMID: 31817999]
  18. Mar Drugs. 2014 Jun 20;12(6):3681-705 [PMID: 24955556]
  19. Experientia. 1963 Nov 15;19:566-8 [PMID: 14101505]
  20. Nat Commun. 2021 Jun 17;12(1):3718 [PMID: 34140479]
  21. Int J Microbiol. 2019 Jan 22;2019:7157845 [PMID: 30805002]
  22. Appl Environ Microbiol. 2015 Nov;81(21):7360-7 [PMID: 26253661]
  23. Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396 [PMID: 34019663]
  24. Entomol Exp Appl. 2015 Apr;155(1):1-17 [PMID: 27478203]
  25. J Chromatogr A. 2006 Apr 21;1112(1-2):64-77 [PMID: 16356507]
  26. J Biol Chem. 2001 Feb 9;276(6):4085-92 [PMID: 11053427]
  27. Environ Microbiol Rep. 2019 Apr;11(2):196-205 [PMID: 30556304]
  28. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  29. Front Plant Sci. 2019 Aug 28;10:1052 [PMID: 31555313]
  30. Mol Ecol. 2015 Oct;24(20):5284-95 [PMID: 26348261]
  31. Appl Biochem Biotechnol. 2020 Dec;192(4):1270-1283 [PMID: 32720080]
  32. Food Microbiol. 2017 Apr;62:9-14 [PMID: 27889171]
  33. 3 Biotech. 2019 Feb;9(2):45 [PMID: 30729069]
  34. Nat Biotechnol. 2016 Aug 9;34(8):828-837 [PMID: 27504778]
  35. mBio. 2021 Jun 29;12(3):e0355120 [PMID: 34126770]
  36. Chemistry. 2017 Jul 12;23(39):9338-9345 [PMID: 28463423]
  37. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12652-7 [PMID: 19506247]
  38. Mol Plant Microbe Interact. 2008 Sep;21(9):1184-92 [PMID: 18700823]
  39. mSphere. 2019 May 15;4(3): [PMID: 31092601]
  40. PLoS One. 2013;8(3):e60519 [PMID: 23544153]
  41. J Gen Microbiol. 1967 Jun;47(3):335-46 [PMID: 6068187]
  42. Nat Prod Rep. 2021 Aug 19;: [PMID: 34879123]
  43. Curr Metabolomics. 2013;1(1):92-107 [PMID: 26078916]
  44. Insects. 2012 Mar 16;3(1):307-23 [PMID: 26467962]
  45. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  46. Molecules. 2018 Jan 15;23(1): [PMID: 29342967]
  47. Food Chem. 2014 Aug 15;157:30-6 [PMID: 24679748]
  48. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12275-80 [PMID: 10535912]
  49. Bioinformatics. 2006 Mar 1;22(5):634-6 [PMID: 16403790]
  50. BMC Bioinformatics. 2010 Jul 23;11:395 [PMID: 20650010]
  51. Beilstein J Org Chem. 2016 Feb 19;12:314-27 [PMID: 26977191]

Grants

  1. Project-ID 239748522 (CRC 1127)/Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  2. VKR10101/Villum Kann Rasmussen, Young Investigator Programme
  3. 771349/European Research Council

Word Cloud

Created with Highcharts 10.0.0gutmetabolomesmicrobialcompoundstermitescommunitiesplantdefensivecomplexdifferencesdietcastesuntargetedLC-MS/MSspeciesdistinctfeaturesbioactivepotentialFungus-farminghostcontributepre-digestionbiomassmanuringfungalmutualistpotentiallyproductionsuppressantagonistsTermitecoloniescharacterizeddivisionlabortermitesizeminormajormorphologicalworkersoldierextendscompositionhypothesizedmirrortestedanalysesthreeSouthAfricanfungus-farmingfoundacrossespeciallysoldiersworkersPrimarymetabolitesdominatehighnumberoverlappingmutualisticfungusmaterialshowimpactsenvironmentidentificationlikelyoriginunderlinescompounddiscoveryamongmanyunannotatedapproachprovidesfirstglimpsedereplicationsuggestspresencerolestargetedfuturestudiesSpecies-Caste-SpecificGutMetabolomesFungus-FarmingTermitesGNPSLC-MSMacrotermesMacrotermitinaeMolDiscoveryOdontotermesTermitomycesmetabolomicssymbiosis

Similar Articles

Cited By