Ganglion Cell Complex: The Optimal Measure for Detection of Structural Progression in the Macula.

Vahid Mohammadzadeh, Erica Su, Alessandro Rabiolo, Lynn Shi, Sepideh Heydar Zadeh, Simon K Law, Anne L Coleman, Joseph Caprioli, Robert E Weiss, Kouros Nouri-Mahdavi
Author Information
  1. Vahid Mohammadzadeh: From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine (V.M., L.S., S.H.Z., S.K.L., A.L.C., J.C., K.N.M.).
  2. Erica Su: Department of Biostatistics, Fielding School of Public Health (E.S., R.E.W.).
  3. Alessandro Rabiolo: University of California-Los Angeles, Los Angeles, California and; Department of Ophthalmology, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK (A.R.).
  4. Lynn Shi: From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine (V.M., L.S., S.H.Z., S.K.L., A.L.C., J.C., K.N.M.).
  5. Sepideh Heydar Zadeh: From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine (V.M., L.S., S.H.Z., S.K.L., A.L.C., J.C., K.N.M.).
  6. Simon K Law: From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine (V.M., L.S., S.H.Z., S.K.L., A.L.C., J.C., K.N.M.).
  7. Anne L Coleman: From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine (V.M., L.S., S.H.Z., S.K.L., A.L.C., J.C., K.N.M.).
  8. Joseph Caprioli: From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine (V.M., L.S., S.H.Z., S.K.L., A.L.C., J.C., K.N.M.).
  9. Robert E Weiss: Department of Biostatistics, Fielding School of Public Health (E.S., R.E.W.).
  10. Kouros Nouri-Mahdavi: From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine (V.M., L.S., S.H.Z., S.K.L., A.L.C., J.C., K.N.M.). Electronic address: nouri-mahdavi@jsei.ucla.edu.

Abstract

PURPOSE: To test the hypothesis that macular ganglion cell complex (GCC) thickness from optical coherence tomography (OCT) provides a stronger change signal regardless of glaucoma severity compared with other macular measures.
DESIGN: Prospective cohort study.
METHODS: Eyes were from 112 patients with moderate to severe glaucoma at baseline from a tertiary glaucoma center. In each 3° × 3° macular superpixel, a hierarchical Bayesian random intercept and slope model with random residual variance was fit to longitudinal full macular thickness (FMT), outer retina layers, GCC, ganglion cell-inner plexiform layer (GCIPL), and ganglion cell layer (GCL) measurements. We estimated population- and individual-level slopes and intercepts. Proportions of substantial worsening and improving superpixel slopes were compared between layers and in superpixels with mild to moderate vs severe damage (total deviation of corresponding visual field location ≥ -8 vs < -8 dB).
RESULTS: Mean (SD) follow-up time and baseline 10-2 visual field mean deviation were 3.6 (0.4) years and -8.9 (5.9) dB, respectively. FMT displayed the highest proportion of significant negative slopes (1932/3519 [54.9%]), followed by GCC (1286/3519 [36.5%]), outer retina layers (1254/3519 [35.6%]), (GCIPL) (1075/3518 [30.6%]), and (GCL) (698/3518 [19.8%]). Inner macular measures detected less worsening in the severe glaucoma group; yet GCC (223/985 [22.6%]) identified the highest proportion (GCIPL: 183/985 [18.6%]; GCL: 106/985 [10.8%]). Proportions of positive rates were small and comparable among all measures.
CONCLUSIONS: GCC is the optimal macular measure for detection of structural change in eyes with moderate to severe glaucoma. Although a higher proportion of worsening superpixels was observed for FMT, a large portion of FMT change could be attributed to changes in outer retina layers.

References

  1. Invest Ophthalmol Vis Sci. 2016 Sep 01;57(11):4799-4805 [PMID: 27654408]
  2. J Ophthalmol. 2018 Oct 08;2018:6581846 [PMID: 30402278]
  3. Am J Ophthalmol. 2017 Mar;175:37-44 [PMID: 27914978]
  4. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4815-23 [PMID: 27623336]
  5. Am J Ophthalmol. 2021 Feb;222:238-247 [PMID: 32450065]
  6. Ophthalmology. 2017 Aug;124(8):1218-1228 [PMID: 28461015]
  7. Am J Ophthalmol. 2010 Feb;149(2):187-188.e1 [PMID: 20103051]
  8. Ophthalmol Glaucoma. 2020 Sep - Oct;3(5):314-326 [PMID: 32980035]
  9. Sci Rep. 2018 Jul 23;8(1):11037 [PMID: 30038425]
  10. Br J Ophthalmol. 2014 Mar;98(3):322-8 [PMID: 24307717]
  11. J Glaucoma. 2017 Aug;26(8):721-725 [PMID: 28692594]
  12. Prog Retin Eye Res. 2017 Mar;57:46-75 [PMID: 28012881]
  13. Stat Med. 2017 May 20;36(11):1735-1753 [PMID: 28152571]
  14. Invest Ophthalmol Vis Sci. 2013 Mar 01;54(3):2198-206 [PMID: 23462750]
  15. Am J Ophthalmol. 2019 Nov;207:18-36 [PMID: 31078529]
  16. J Glaucoma. 2012 Mar;21(3):147-54 [PMID: 21423039]
  17. Sci Rep. 2020 Feb 18;10(1):2808 [PMID: 32071369]
  18. Invest Ophthalmol Vis Sci. 2013 Mar 15;54(3):1941-9 [PMID: 23422822]
  19. Invest Ophthalmol Vis Sci. 2012 Apr 24;53(4):2199-207 [PMID: 22410555]
  20. Prog Retin Eye Res. 2013 Jan;32:1-21 [PMID: 22995953]
  21. Surv Ophthalmol. 2020 Nov - Dec;65(6):597-638 [PMID: 32199939]
  22. Transl Vis Sci Technol. 2021 Apr 1;10(4):15 [PMID: 34003991]
  23. Vision Res. 2007 Oct;47(22):2901-11 [PMID: 17320143]
  24. Br J Ophthalmol. 2019 Sep;103(9):1217-1222 [PMID: 30385436]
  25. Ophthalmology. 2017 Dec;124(12S):S57-S65 [PMID: 29157363]
  26. Transl Vis Sci Technol. 2020 Jun 30;9(7):50 [PMID: 32832255]
  27. Invest Ophthalmol Vis Sci. 2011 Jul 29;52(8):5794-803 [PMID: 21693614]
  28. Invest Ophthalmol Vis Sci. 2014 Nov 20;55(12):8386-92 [PMID: 25414192]
  29. Invest Ophthalmol Vis Sci. 2012 Jun 20;53(7):3817-26 [PMID: 22562510]
  30. Invest Ophthalmol Vis Sci. 1999 Sep;40(10):2242-50 [PMID: 10476789]
  31. PLoS One. 2018 Mar 9;13(3):e0194169 [PMID: 29522565]
  32. Am J Ophthalmol. 2016 Jun;166:29-36 [PMID: 26949135]
  33. Arch Ophthalmol. 2011 Dec;129(12):1529-36 [PMID: 22159673]
  34. Am J Ophthalmol. 2012 Jun;153(6):1197-205.e1 [PMID: 22317914]
  35. Ophthalmology. 2020 Jul;127(7):888-900 [PMID: 32173112]
  36. Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4857-64 [PMID: 25829417]
  37. Ophthalmol Glaucoma. 2019 Mar-Apr;2(2):72-77 [PMID: 32632403]
  38. Ophthalmology. 2012 Feb;119(2):308-13 [PMID: 22182800]
  39. Invest Ophthalmol Vis Sci. 2012 May 14;53(6):2760-9 [PMID: 22467579]
  40. Invest Ophthalmol Vis Sci. 2015 Feb 12;56(3):1603-8 [PMID: 25678691]
  41. Invest Ophthalmol Vis Sci. 2018 Apr 1;59(5):1897-1904 [PMID: 29677350]
  42. J Glaucoma. 2017 Mar;26(3):208-215 [PMID: 27811573]
  43. Transl Vis Sci Technol. 2016 Jul 19;5(4):5 [PMID: 27486555]
  44. Ophthalmol Glaucoma. 2019 Jan - Feb;2(1):36-46 [PMID: 32672556]
  45. Invest Ophthalmol Vis Sci. 2014 Apr 29;55(5):3231-6 [PMID: 24781944]
  46. Semin Ophthalmol. 2012 Sep-Nov;27(5-6):160-6 [PMID: 23163271]
  47. BMC Ophthalmol. 2018 Jul 11;18(1):169 [PMID: 29996804]

Grants

  1. R01 EY029792/NEI NIH HHS

MeSH Term

Bayes Theorem
Glaucoma
Humans
Intraocular Pressure
Macula Lutea
Prospective Studies
Retinal Ganglion Cells
Tomography, Optical Coherence

Word Cloud

Created with Highcharts 10.0.0macularGCCglaucomasevereFMTlayers6%]ganglionchangemeasuresmoderateouterretinaslopesworsening-8proportioncellthicknesscomparedbaselinesuperpixelrandomlayerGCIPLGCLProportionssuperpixelsvsdeviationvisualfielddB9highest8%]PURPOSE:testhypothesiscomplexopticalcoherencetomographyOCTprovidesstrongersignalregardlessseverityDESIGN:ProspectivecohortstudyMETHODS:Eyes112patientstertiarycenter3° × 3°hierarchicalBayesianinterceptslopemodelresidualvariancefitlongitudinalfullcell-innerplexiformmeasurementsestimatedpopulation-individual-levelinterceptssubstantialimprovingmilddamagetotalcorrespondinglocation<RESULTS:MeanSDfollow-uptime10-2mean3604years5respectivelydisplayedsignificantnegative1932/3519[549%]followed1286/3519[365%]1254/3519[351075/3518[30698/3518[19Innerdetectedlessgroupyet223/985[22identifiedGCIPL:183/985[18GCL:106/985[10positiveratessmallcomparableamongCONCLUSIONS:optimalmeasuredetectionstructuraleyesAlthoughhigherobservedlargeportionattributedchangesGanglionCellComplex:OptimalMeasureDetectionStructuralProgressionMacula

Similar Articles

Cited By