Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality.

Angeliki Papana
Author Information
  1. Angeliki Papana: Department of Economics, University of Macedonia, 54636 Thessaloniki, Greece. ORCID

Abstract

The study of the interdependence relationships of the variables of an examined system is of great importance and remains a challenging task. There are two distinct cases of interdependence. In the first case, the variables evolve in synchrony, connections are undirected and the connectivity is examined based on symmetric measures, such as correlation. In the second case, a variable drives another one and they are connected with a causal relationship. Therefore, directed connections entail the determination of the interrelationships based on causality measures. The main open question that arises is the following: can symmetric correlation measures or directional causality measures be applied to infer the connectivity network of an examined system? Using simulations, we demonstrate the performance of different connectivity measures in case of contemporaneous or/and temporal dependencies. Results suggest the sensitivity of correlation measures when temporal dependencies exist in the data. On the other hand, causality measures do not spuriously indicate causal effects when data present only contemporaneous dependencies. Finally, the necessity of introducing effective instantaneous causality measures is highlighted since they are able to handle both contemporaneous and causal effects at the same time. Results based on instantaneous causality measures are promising; however, further investigation is required in order to achieve an overall satisfactory performance.

Keywords

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026209 [PMID: 17930123]
  2. F1000Res. 2017 Sep 20;6:1710 [PMID: 29167736]
  3. Phys Rev Lett. 1996 Mar 11;76(11):1804-1807 [PMID: 10060525]
  4. Neuroimage. 2002 Jul;16(3 Pt 1):822-35 [PMID: 12169266]
  5. J Bioinform Comput Biol. 2009 Aug;7(4):663-84 [PMID: 19634197]
  6. Phys Rev A Gen Phys. 1986 Feb;33(2):1134-1140 [PMID: 9896728]
  7. Hum Brain Mapp. 1999;8(4):194-208 [PMID: 10619414]
  8. J Neurosci Methods. 1998 Aug 31;83(1):57-72 [PMID: 9765051]
  9. BMC Syst Biol. 2017 Dec 21;11(Suppl 7):128 [PMID: 29322924]
  10. Chaos. 2018 Jul;28(7):075310 [PMID: 30070533]
  11. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1423-6 [PMID: 22254585]
  12. Behav Res Methods. 2009 Nov;41(4):1149-60 [PMID: 19897823]
  13. PLoS One. 2018 Mar 16;13(3):e0194382 [PMID: 29547669]
  14. PLoS One. 2012;7(9):e44633 [PMID: 23028571]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066138 [PMID: 15244698]
  16. Int J Neural Syst. 2019 May;29(4):1850051 [PMID: 30563386]
  17. Biol Cybern. 1991;65(3):203-10 [PMID: 1912013]
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066202 [PMID: 14754292]
  19. Comput Biol Med. 2013 Aug 1;43(7):962-5 [PMID: 23485200]
  20. IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2270-2279 [PMID: 30452374]
  21. J Comput Neurosci. 2012 Aug;33(1):97-121 [PMID: 22203465]
  22. Entropy (Basel). 2021 Aug 12;23(8): [PMID: 34441177]
  23. Comput Biol Med. 2011 Dec;41(12):1132-41 [PMID: 21742321]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):056221 [PMID: 15600742]
  25. Perspect Clin Res. 2016 Oct-Dec;7(4):187-190 [PMID: 27843795]
  26. Clin Kidney J. 2021 May 03;14(11):2332-2337 [PMID: 34754428]
  27. Diabetes Metab Syndr. 2020 Nov-Dec;14(6):1735-1742 [PMID: 32919321]
  28. Neurosci Lett. 2006 Sep 25;405(3):202-6 [PMID: 16876320]
  29. J Neurosci. 2014 Oct 22;34(43):14288-303 [PMID: 25339742]
  30. Science. 2012 Oct 26;338(6106):496-500 [PMID: 22997134]
  31. Appl Spectrosc. 2003 Dec;57(12):1605-9 [PMID: 14686783]
  32. Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110612 [PMID: 23858480]
  33. J Neurosci Methods. 2009 Oct 30;184(1):152-60 [PMID: 19628006]
  34. Ophthalmic Physiol Opt. 2019 Sep;39(5):316-327 [PMID: 31423624]
  35. J Neurosci Methods. 2014 Mar 30;225:71-80 [PMID: 24472530]
  36. Comput Biomed Res. 1997 Apr;30(2):129-64 [PMID: 9167085]
  37. BMC Bioinformatics. 2012 Dec 09;13:328 [PMID: 23217028]
  38. Biol Cybern. 2010 Nov;103(5):387-400 [PMID: 20938676]
  39. Chaos. 2020 Jan;30(1):013117 [PMID: 32013475]
  40. Phys Rev Lett. 2000 Jul 10;85(2):461-4 [PMID: 10991308]
  41. Sci Adv. 2019 Nov 27;5(11):eaau4996 [PMID: 31807692]
  42. J Appl Physiol (1985). 1994 Feb;76(2):965-73 [PMID: 8175612]
  43. Bioinformatics. 2004 Dec 12;20(18):3565-74 [PMID: 15284096]
  44. Neuroimage. 2018 Jul 15;175:161-175 [PMID: 29524622]
  45. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052801 [PMID: 25353838]
  46. J Neurosci Methods. 2008 Jul 15;172(1):79-93 [PMID: 18508128]
  47. Neuroimage. 2008 Jun;41(2):354-62 [PMID: 18394927]
  48. Behav Neurol. 2019 Sep 3;2019:1410425 [PMID: 31565094]
  49. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016207 [PMID: 20866707]
  50. PLoS One. 2014 Oct 14;9(10):e109462 [PMID: 25314003]
  51. Comput Math Methods Med. 2012;2012:140513 [PMID: 22666300]
  52. Front Syst Neurosci. 2016 Jan 08;9:175 [PMID: 26778976]
  53. J Neurosci Methods. 2011 Jun 15;198(2):344-58 [PMID: 21513733]
  54. Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110618 [PMID: 23858484]
  55. Phys Rev Lett. 2008 Jun 13;100(23):234101 [PMID: 18643502]
  56. Int J Neurosci. 2002 Oct;112(10):1263-84 [PMID: 12587526]
  57. Pediatr Neurol. 1994 Mar;10(2):104-8 [PMID: 8024658]
  58. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 1):041904 [PMID: 12443232]
  59. Entropy (Basel). 2021 Feb 08;23(2): [PMID: 33567755]
  60. J Neurosci Methods. 2013 May 15;215(2):170-89 [PMID: 23537932]
  61. Ann Appl Stat. 2009 Jan 1;3(4):1266-1269 [PMID: 20574547]
  62. Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110613 [PMID: 23858481]
  63. Neuroimage. 2021 Mar;228:117704 [PMID: 33385554]
  64. BMC Bioinformatics. 2015 Aug 19;16:260 [PMID: 26283601]
  65. Front Neurosci. 2020 Jun 19;14:648 [PMID: 32636735]
  66. J Neurosci. 2015 Feb 25;35(8):3293-7 [PMID: 25716830]
  67. Int Stat Rev. 2021 Dec;89(3):605-634 [PMID: 37197445]
  68. Neuroinformatics. 2005;3(4):301-14 [PMID: 16284413]
  69. Comput Biol Med. 2013 Feb;43(2):131-4 [PMID: 23237454]
  70. J Neurosci Methods. 2017 Sep 01;289:64-74 [PMID: 28687522]
  71. J Neurosci Methods. 2013 Jan 15;212(1):79-86 [PMID: 23041109]
  72. Sci Rep. 2020 Jan 16;10(1):438 [PMID: 31949233]
  73. Phys Rev E. 2017 Dec;96(6-1):062315 [PMID: 29347332]
  74. Science. 2011 Dec 16;334(6062):1518-24 [PMID: 22174245]
  75. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041903 [PMID: 12005869]
  76. Front Syst Neurosci. 2016 Jan 20;9:189 [PMID: 26834583]
  77. Rev Alerg Mex. 2019 Jul-Sep;66(3):354-360 [PMID: 31606019]
  78. Physiol Meas. 2015 Apr;36(4):827-43 [PMID: 25799172]
  79. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 1):031123 [PMID: 17500684]
  80. IEEE Trans Syst Man Cybern B Cybern. 2003;33(1):85-95 [PMID: 18238159]
  81. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 May;61(5 Pt A):5142-8 [PMID: 11031559]
  82. Biol Cybern. 2001 Jun;84(6):463-74 [PMID: 11417058]
  83. Epilepsia. 2012 Feb;53(2):359-67 [PMID: 22191664]
  84. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011138 [PMID: 19658684]
  85. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062918 [PMID: 23848759]
  86. Neuroimage. 2008 Nov 15;43(3):614-23 [PMID: 18703146]
  87. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 2):056215 [PMID: 18643150]
  88. Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7063-E7072 [PMID: 28778996]
  89. J Neurosci Methods. 2003 May 30;125(1-2):195-207 [PMID: 12763246]

Grants

  1. 794/Hellenic Foundation for Research and Innovation
  2. 794/General Secretariat for Research and Technology

Word Cloud

Created with Highcharts 10.0.0measurescausalityconnectivitycorrelationdependenciesexaminedcasebasedcausalcontemporaneousinstantaneousinterdependencevariablesconnectionssymmetricperformancetemporalResultsdataeffectsstudyrelationshipssystemgreatimportanceremainschallengingtasktwodistinctcasesfirstevolvesynchronyundirectedsecondvariabledrivesanotheroneconnectedrelationshipThereforedirectedentaildeterminationinterrelationshipsmainopenquestionarisesfollowing:candirectionalappliedinfernetworksystem?Usingsimulationsdemonstratedifferentor/andsuggestsensitivityexisthandspuriouslyindicatepresentFinallynecessityintroducingeffectivehighlightedsinceablehandletimepromisinghoweverinvestigationrequiredorderachieveoverallsatisfactoryConnectivityAnalysisMultivariateTimeSeries:CorrelationvsCausalitycomplexnetworkslagged

Similar Articles

Cited By