Artificial Intelligence for Forecasting the Prevalence of COVID-19 Pandemic: An Overview.

Ammar H Elsheikh, Amal I Saba, Hitesh Panchal, Sengottaiyan Shanmugan, Naser A Alsaleh, Mahmoud Ahmadein
Author Information
  1. Ammar H Elsheikh: Faculty of Engineering, Tanta University, Tanta 31527, Egypt. ORCID
  2. Amal I Saba: Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
  3. Hitesh Panchal: Department of Mechanical Engineering, Government Engineering College, Patan 384265, Gujarat, India. ORCID
  4. Sengottaiyan Shanmugan: Research Centre for Solar Energy, Department of Physics, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, Andhra Pradesh, India.
  5. Naser A Alsaleh: Mechanical Engineering Department, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia.
  6. Mahmoud Ahmadein: Mechanical Engineering Department, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia.

Abstract

Since the discovery of COVID-19 at the end of 2019, a significant surge in forecasting publications has been recorded. Both statistical and artificial intelligence (AI) approaches have been reported; however, the AI approaches showed a better accuracy compared with the statistical approaches. This study presents a review on the applications of different AI approaches used in forecasting the spread of this pandemic. The fundamentals of the commonly used AI approaches in this context are briefly explained. Evaluation of the forecasting accuracy using different statistical measures is introduced. This review may assist researchers, experts and policy makers involved in managing the COVID-19 pandemic to develop more accurate forecasting models and enhanced strategies to control the spread of this pandemic. Additionally, this review study is highly significant as it provides more important information of AI applications in forecasting the prevalence of this pandemic.

Keywords

References

  1. Sci Rep. 2021 Jul 12;11(1):14353 [PMID: 34253822]
  2. Chaos Solitons Fractals. 2020 Sep;138:109945 [PMID: 32508399]
  3. Chaos Solitons Fractals. 2020 Oct;139:110027 [PMID: 32834591]
  4. Appl Intell (Dordr). 2020 Nov 17;:1-14 [PMID: 34764568]
  5. Chaos Solitons Fractals. 2020 Nov;140:110227 [PMID: 32843824]
  6. Comput Math Methods Med. 2021 May 10;2021:5527271 [PMID: 34055034]
  7. J Clin Med. 2020 Mar 02;9(3): [PMID: 32131537]
  8. Appl Soft Comput. 2020 Nov;96:106691 [PMID: 33519327]
  9. J Infect Public Health. 2020 Jul;13(7):914-919 [PMID: 32546438]
  10. Int J Environ Res Public Health. 2020 Jun 08;17(11): [PMID: 32521641]
  11. Int J Inf Technol. 2021 Jan 3;:1-11 [PMID: 33426425]
  12. Chaos Solitons Fractals. 2020 Jul;136:109924 [PMID: 32501372]
  13. Financ Res Lett. 2021 Jul;41:101844 [PMID: 34131413]
  14. ISA Trans. 2021 Jan 4;: [PMID: 33422330]
  15. Chaos Solitons Fractals. 2021 Jan;142:110547 [PMID: 33311861]
  16. Sci Total Environ. 2020 Aug 10;729:138995 [PMID: 32353723]
  17. Process Saf Environ Prot. 2020 Sep;141:1-8 [PMID: 32501368]
  18. Data Brief. 2020 Aug;31:105854 [PMID: 32572378]
  19. Comput Methods Programs Biomed. 2020 Nov;196:105581 [PMID: 32534344]
  20. Chaos Solitons Fractals. 2020 Sep;138:109946 [PMID: 32836915]
  21. Comput Commun. 2021 Aug 1;176:234-248 [PMID: 34149118]
  22. Chaos Solitons Fractals. 2020 Jun;135:109842 [PMID: 32341627]
  23. Chaos Solitons Fractals. 2020 Jun;135:109853 [PMID: 32501370]
  24. Sci Total Environ. 2020 Jul 20;727:138394 [PMID: 32334207]
  25. Inform Med Unlocked. 2021;22:100505 [PMID: 33363252]
  26. Biomed Signal Process Control. 2021 Jul;68:102622 [PMID: 33846685]
  27. Chaos Solitons Fractals. 2020 Jun;135:109841 [PMID: 32501369]
  28. Chaos Solitons Fractals. 2020 Jun;135:109866 [PMID: 32395038]
  29. Chaos Solitons Fractals. 2020 Sep;138:109948 [PMID: 32834578]
  30. Process Saf Environ Prot. 2021 May;149:223-233 [PMID: 33162687]
  31. Biocybern Biomed Eng. 2021 Apr-Jun;41(2):572-588 [PMID: 33967366]
  32. Inform Med Unlocked. 2020;19:100360 [PMID: 32501424]
  33. Chaos Solitons Fractals. 2021 Jan;142:110336 [PMID: 33110297]
  34. Pattern Recognit. 2021 May;113:107700 [PMID: 33100403]
  35. Chaos Solitons Fractals. 2020 Sep;138:110018 [PMID: 32565626]
  36. Expert Syst Appl. 2022 Mar 1;189:116063 [PMID: 34690450]
  37. Sci Total Environ. 2020 Aug 10;729:138883 [PMID: 32361446]
  38. Chaos Solitons Fractals. 2020 Sep;138:110023 [PMID: 32565627]
  39. Chaos Solitons Fractals. 2020 Sep;138:110007 [PMID: 32565624]
  40. Stoch Environ Res Risk Assess. 2021 Jan 3;:1-13 [PMID: 33424434]
  41. Process Saf Environ Prot. 2021 May;149:399-409 [PMID: 33204052]
  42. Chaos Solitons Fractals. 2020 Nov;140:110121 [PMID: 32834633]
  43. Sci Rep. 2020 Nov 11;10(1):19549 [PMID: 33177550]
  44. Healthcare (Basel). 2021 Aug 08;9(8): [PMID: 34442157]
  45. J Infect Public Health. 2021 Oct;14(10):1435-1445 [PMID: 34362695]
  46. Chaos Solitons Fractals. 2020 Nov;140:110242 [PMID: 32863616]
  47. Entropy (Basel). 2021 Oct 22;23(11): [PMID: 34828081]
  48. Health Policy Technol. 2020 Dec;9(4):639-648 [PMID: 32874851]
  49. Sci Total Environ. 2020 Aug 1;728:138762 [PMID: 32334157]
  50. Chaos Solitons Fractals. 2020 Oct;139:110051 [PMID: 32834605]
  51. Data Brief. 2020 Aug;31:105779 [PMID: 32537480]
  52. Chaos Solitons Fractals. 2020 Sep;138:109926 [PMID: 32501377]
  53. Commun Nonlinear Sci Numer Simul. 2020 Nov;90:105372 [PMID: 32834701]
  54. Results Phys. 2021 Oct;29:104705 [PMID: 34458083]
  55. Chaos Solitons Fractals. 2021 Jan;142:110511 [PMID: 33281305]
  56. Appl Soft Comput. 2020 Nov;96:106626 [PMID: 32834800]
  57. Chaos Solitons Fractals. 2020 Sep;138:109911 [PMID: 32536757]
  58. Chaos Solitons Fractals. 2020 Jun;135:109864 [PMID: 32390691]
  59. Entropy (Basel). 2020 Jan 09;22(1): [PMID: 33285858]
  60. Chaos Solitons Fractals. 2020 Jun;135:109850 [PMID: 32355424]
  61. Chaos Solitons Fractals. 2020 Nov;140:110214 [PMID: 32839643]
  62. Chaos Solitons Fractals. 2020 Nov;140:110170 [PMID: 32834651]
  63. Chaos Solitons Fractals. 2020 Sep;138:110015 [PMID: 32565625]

Grants

  1. (21-13-18-032) 384/Imam Muhammad ibn Saud Islamic University

Word Cloud

Created with Highcharts 10.0.0forecastingAIapproachesCOVID-19reviewpandemicstatisticalsignificantartificialintelligenceaccuracystudyapplicationsdifferentusedspreadSincediscoveryend2019surgepublicationsrecordedreportedhowevershowedbettercomparedpresentsfundamentalscommonlycontextbrieflyexplainedEvaluationusingmeasuresintroducedmayassistresearchersexpertspolicymakersinvolvedmanagingdevelopaccuratemodelsenhancedstrategiescontrolAdditionallyhighlyprovidesimportantinformationprevalenceArtificialIntelligenceForecastingPrevalencePandemic:Overview

Similar Articles

Cited By