Comprehensive Genome-Wide Identification and Transcript Profiling of GABA Pathway Gene Family in Apple ().

Qingbo Zheng, Shenghui Su, Zhe Wang, Yongzhang Wang, Xiaozhao Xu
Author Information
  1. Qingbo Zheng: College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
  2. Shenghui Su: College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
  3. Zhe Wang: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China.
  4. Yongzhang Wang: Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China.
  5. Xiaozhao Xu: College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.

Abstract

γ-Aminobutyric Acid (GABA), a four-carbon non-protein amino acid, is a significant component of the free amino acid pool in most prokaryotic and eukaryotic organisms. GABA is involved in pH regulation, maintaining C/N balance, plant development and defence, as well as a compatible osmolyte and an alternative pathway for glutamate utilization via anion flux. Glutamate decarboxylase (GAD, EC 4.1.1.15) and GABA transaminase (GABA-T, EC 2.6.1.19) are two key enzymes involved in the synthesis and metabolism of GABA. Recently, GABA transporters (GATs), protein and aluminium-activated malate transporter (ALMT) proteins which function as GABA receptors, have been shown to be involved in GABA regulation. However, there is no report on the characterization of apple GABA pathway genes. In this study, we performed a genome-wide analysis and expression profiling of the GABA pathway gene family in the apple genome. A total of 24 genes were identified including five GAD genes (namely ), two GABA-T genes (namely ,), 10 GAT genes (namely ) and seven ALMT genes (namely ). These genes were randomly distributed on 12 chromosomes. Phylogenetic analyses grouped GABA shunt genes into three clusters-cluster I, cluster II, and cluster III-which had three, four, and five genes, respectively. The expression profile analysis revealed significant expression levels in both fruit and flower organs, except pollen. However, there were no significant differences in the expression of other GABA shunt genes in different tissues. This work provides the first characterization of the GABA shunt gene family in apple and suggests their importance in apple response to abiotic stress. These results can serve as a guide for future studies on the understanding and functional characterization of these gene families.

Keywords

References

  1. J Plant Physiol. 2012 Mar 15;169(5):452-8 [PMID: 22189426]
  2. Int J Mol Sci. 2018 Sep 18;19(9): [PMID: 30231490]
  3. Nature. 2014 Aug 21;512(7514):270-5 [PMID: 24909990]
  4. Mol Biol Rep. 2014 Sep;41(9):6253-62 [PMID: 24976574]
  5. Plant Cell Environ. 2013 May;36(5):1009-18 [PMID: 23148892]
  6. Nat Commun. 2013;4:2797 [PMID: 24256998]
  7. Front Plant Sci. 2016 Oct 04;7:1488 [PMID: 27757118]
  8. Nat Genet. 2010 Oct;42(10):833-9 [PMID: 20802477]
  9. BMC Plant Biol. 2013 Sep 28;13:144 [PMID: 24074460]
  10. Trends Plant Sci. 2004 Mar;9(3):110-5 [PMID: 15003233]
  11. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  12. Sci Rep. 2016 Mar 29;6:23685 [PMID: 27021285]
  13. New Phytol. 2020 Feb;225(3):1166-1180 [PMID: 30688365]
  14. Front Plant Sci. 2019 Sep 11;10:1083 [PMID: 31572409]
  15. Plant Cell Rep. 2017 Jan;36(1):103-116 [PMID: 27704232]
  16. Plant Mol Biol. 2019 Sep;101(1-2):129-148 [PMID: 31267256]
  17. Plant Physiol Biochem. 2007 Aug;45(8):560-6 [PMID: 17624796]
  18. Ying Yong Sheng Tai Xue Bao. 2015 Dec;26(12):3746-52 [PMID: 27112014]
  19. J Biol Chem. 2006 Mar 17;281(11):7197-204 [PMID: 16407306]
  20. Plant Cell Physiol. 2011 May;52(5):894-908 [PMID: 21471118]
  21. PeerJ. 2017 Jun 14;5:e3439 [PMID: 28626614]
  22. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  23. Front Plant Sci. 2019 Oct 22;10:1333 [PMID: 31695717]
  24. Curr Opin Plant Biol. 2012 Jun;15(3):315-21 [PMID: 22366488]
  25. BMC Plant Biol. 2019 Jan 30;19(1):43 [PMID: 30700249]
  26. Plant Cell Rep. 2019 Aug;38(8):847-867 [PMID: 30739138]
  27. Sci Rep. 2019 Jan 24;9(1):484 [PMID: 30679455]
  28. Plant Mol Biol. 2004 May;55(3):315-25 [PMID: 15604684]
  29. Plant Physiol. 2006 Dec;142(4):1350-2 [PMID: 17151138]
  30. Plant Cell. 2018 May;30(5):1147-1164 [PMID: 29618628]
  31. Nucleic Acids Res. 2019 Jan 8;47(D1):D1137-D1145 [PMID: 30357347]
  32. Trends Plant Sci. 2016 May;21(5):376-387 [PMID: 26880317]
  33. Mol Plant. 2011 May;4(3):453-63 [PMID: 21324969]
  34. PLoS One. 2013;8(1):e52323 [PMID: 23308109]
  35. Trends Plant Sci. 2008 Jan;13(1):14-9 [PMID: 18155636]
  36. Planta. 2018 Oct;248(4):963-979 [PMID: 29982922]
  37. Plant Biotechnol J. 2019 Feb;17(2):451-460 [PMID: 30044051]
  38. Nat Commun. 2015 Jul 29;6:7879 [PMID: 26219411]
  39. Annu Rev Plant Biol. 2011;62:25-51 [PMID: 21275645]
  40. Plant Physiol Biochem. 2018 Sep;130:157-172 [PMID: 29990769]
  41. Nucleic Acids Res. 2002 Jan 1;30(1):325-7 [PMID: 11752327]
  42. J Exp Bot. 2020 Feb 19;71(4):1459-1474 [PMID: 31740934]
  43. Biochim Biophys Acta. 2001 Dec 30;1522(3):143-50 [PMID: 11779628]
  44. Cell Mol Life Sci. 2017 May;74(9):1577-1603 [PMID: 27838745]
  45. Plant Cell. 1999 Mar;11(3):377-92 [PMID: 10072398]
  46. Nat Genet. 2017 Jul;49(7):1099-1106 [PMID: 28581499]
  47. BMC Plant Biol. 2010 Feb 01;10:20 [PMID: 20122158]

MeSH Term

Chromosomes, Plant
Evolution, Molecular
Gene Expression Profiling
Gene Expression Regulation, Plant
Genome, Plant
Malus
Multigene Family
Phylogeny
Plant Proteins
Stress, Physiological
gamma-Aminobutyric Acid

Chemicals

Plant Proteins
gamma-Aminobutyric Acid

Word Cloud

Similar Articles

Cited By