The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem.

Deisy M G C Rocha, Miguel Viveiros, Margarida Saraiva, Nuno S Osório
Author Information
  1. Deisy M G C Rocha: Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
  2. Miguel Viveiros: GHTM, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical da Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal. ORCID
  3. Margarida Saraiva: i3S, Instituto de Investigacão e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal.
  4. Nuno S Osório: Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal. ORCID

Abstract

The airborne pathogen is responsible for a present major public health problem worsened by the emergence of drug resistance. has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.

Keywords

References

  1. PLoS One. 2014 Jun 17;9(6):e100078 [PMID: 24937123]
  2. Front Microbiol. 2017 Feb 17;8:246 [PMID: 28261193]
  3. Nat Commun. 2019 Jul 2;10(1):2928 [PMID: 31266959]
  4. Front Cell Infect Microbiol. 2019 Nov 05;9:345 [PMID: 31828045]
  5. Front Microbiol. 2020 Sep 17;11:559469 [PMID: 33042066]
  6. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19665-19674 [PMID: 31488707]
  7. PLoS One. 2012;7(8):e42323 [PMID: 22912700]
  8. Antibiotics (Basel). 2021 Sep 26;10(10): [PMID: 34680750]
  9. FEMS Microbiol Rev. 2017 May 1;41(3):354-373 [PMID: 28369307]
  10. Eur Respir J. 2017 Mar 22;49(3): [PMID: 28331043]
  11. Infect Drug Resist. 2018 Mar 27;11:431-440 [PMID: 29628767]
  12. Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):3910-3912 [PMID: 32075922]
  13. Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):3913-3914 [PMID: 32075921]
  14. mBio. 2019 Jul 30;10(4): [PMID: 31363023]
  15. Mol Biol Evol. 2020 Jan 1;37(1):195-207 [PMID: 31532481]
  16. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32540971]
  17. Antimicrob Agents Chemother. 2013 Apr;57(4):1857-65 [PMID: 23380727]
  18. Trends Microbiol. 2018 Aug;26(8):677-691 [PMID: 29439838]
  19. Molecules. 2019 Mar 03;24(5): [PMID: 30832456]
  20. Nat Genet. 2016 May;48(5):544-51 [PMID: 27064254]
  21. J Glob Antimicrob Resist. 2016 Mar;4:5-10 [PMID: 27436385]
  22. J Clin Microbiol. 2011 Jul;49(7):2625-30 [PMID: 21593257]
  23. Antimicrob Agents Chemother. 2020 Sep 21;64(10): [PMID: 32718966]
  24. EcoSal Plus. 2018 Nov;8(1): [PMID: 30447062]
  25. Nature. 2000 Sep 21;407(6802):327-39 [PMID: 11014182]
  26. J Drug Target. 2019 Nov;27(9):1004-1016 [PMID: 30730218]
  27. Tuberculosis (Edinb). 2018 Jul;111:8-13 [PMID: 30029920]
  28. ERJ Open Res. 2020 Aug 31;6(3): [PMID: 32904577]
  29. Epidemics. 2021 Sep;36:100471 [PMID: 34256273]
  30. Nat Commun. 2015 May 11;6:7119 [PMID: 25960343]
  31. SLAS Discov. 2017 Dec;22(10):1229-1238 [PMID: 28314116]
  32. mBio. 2018 May 15;9(3): [PMID: 29764951]
  33. Int J Med Microbiol. 2019 Dec;309(8):151353 [PMID: 31521502]
  34. FEMS Microbiol Rev. 2021 Aug 17;45(4): [PMID: 33320947]
  35. J Proteome Res. 2016 Apr 1;15(4):1194-204 [PMID: 26930559]
  36. PLoS One. 2019 Jun 12;14(6):e0217597 [PMID: 31188848]
  37. Mol Microbiol. 2007 Feb;63(4):1096-106 [PMID: 17238915]
  38. PLoS One. 2018 Jun 4;13(6):e0197737 [PMID: 29864118]
  39. Medchemcomm. 2019 Jun 11;10(8):1342-1360 [PMID: 31534654]
  40. Int J Infect Dis. 2017 Mar;56:200-207 [PMID: 28007659]
  41. Tuberculosis (Edinb). 2021 Jul;129:102092 [PMID: 34102584]
  42. Tuberculosis (Edinb). 2021 Jul;129:102091 [PMID: 34090078]
  43. J Infect. 2000 Sep;41(2):184-7 [PMID: 11023769]
  44. Mol Microbiol. 1993 Sep;9(6):1239-46 [PMID: 7934937]
  45. PLoS One. 2020 Dec 31;15(12):e0244829 [PMID: 33382836]
  46. Antimicrob Agents Chemother. 2006 Aug;50(8):2836-41 [PMID: 16870781]
  47. Front Cell Infect Microbiol. 2020 Aug 25;10:443 [PMID: 32984071]
  48. J Glob Antimicrob Resist. 2019 Dec;19:301-307 [PMID: 31100498]
  49. Sci Rep. 2020 May 15;10(1):8024 [PMID: 32415151]
  50. Microb Genom. 2018 Feb;4(2): [PMID: 29310751]
  51. Evol Bioinform Online. 2020 Jul 27;16:1176934320944932 [PMID: 32782426]
  52. PLoS Med. 2015 Sep 29;12(9):e1001880 [PMID: 26418737]
  53. mBio. 2011 Jun 14;2(3):e00100-11 [PMID: 21673191]
  54. Tuberculosis (Edinb). 2016 Jan;96:102-6 [PMID: 26786661]
  55. Ann Am Thorac Soc. 2015 Dec;12(12):1749-59 [PMID: 26653188]
  56. J Biol Chem. 2012 Jan 2;287(1):299-310 [PMID: 22069311]
  57. Tuberculosis (Edinb). 2020 Dec;125:101985 [PMID: 32829153]
  58. PLoS One. 2019 Jun 5;14(6):e0213046 [PMID: 31166945]
  59. Comp Immunol Microbiol Infect Dis. 2021 Feb;74:101574 [PMID: 33249329]
  60. PLoS Negl Trop Dis. 2021 Apr 22;15(4):e0009324 [PMID: 33886558]
  61. BMC Infect Dis. 2020 Nov 11;20(1):831 [PMID: 33176701]
  62. Antimicrob Agents Chemother. 2004 Apr;48(4):1289-94 [PMID: 15047531]
  63. Nat Commun. 2020 Apr 3;11(1):1661 [PMID: 32245967]
  64. BMC Microbiol. 2020 May 25;20(1):132 [PMID: 32450809]
  65. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32540973]
  66. Lancet Microbe. 2021 Mar;2(3):e96-e104 [PMID: 33912853]
  67. mSystems. 2020 Dec 15;5(6): [PMID: 33323416]
  68. Antimicrob Agents Chemother. 2019 Mar 27;63(4): [PMID: 30718257]
  69. Lancet Infect Dis. 2012 Feb;12(2):157-66 [PMID: 22281142]
  70. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0116421 [PMID: 34460306]
  71. Clin Infect Dis. 2015 Oct 15;61Suppl 3:S102-18 [PMID: 26409271]
  72. J Glob Antimicrob Resist. 2017 Jun;9:51-56 [PMID: 28404234]
  73. BMC Microbiol. 2012 May 30;12:90 [PMID: 22646308]
  74. PLoS One. 2016 Sep 16;11(9):e0162797 [PMID: 27636095]
  75. Nat Commun. 2020 Apr 23;11(1):1949 [PMID: 32327653]
  76. Antibiotics (Basel). 2021 Jul 02;10(7): [PMID: 34356728]
  77. Tuberculosis (Edinb). 2018 May;110:44-51 [PMID: 29779772]
  78. Toxins (Basel). 2014 Mar 06;6(3):1002-20 [PMID: 24662523]
  79. J Antimicrob Chemother. 2013 Jan;68(1):27-33 [PMID: 23054995]
  80. Lancet Infect Dis. 2003 Jan;3(1):13-21 [PMID: 12505028]
  81. Science. 2006 Jun 30;312(5782):1944-6 [PMID: 16809538]
  82. Nat Genet. 2018 Jun;50(6):849-856 [PMID: 29785015]
  83. Bioinformation. 2019 Apr 15;15(4):261-268 [PMID: 31285643]
  84. Sci Rep. 2017 Jul 19;7(1):5868 [PMID: 28724903]
  85. Microb Drug Resist. 2020 Jul;26(7):766-775 [PMID: 31976809]
  86. Nat Microbiol. 2018 Sep;3(9):1032-1042 [PMID: 30082724]
  87. Clin Microbiol Rev. 2020 Oct 14;34(1): [PMID: 33055230]
  88. PLoS One. 2012;7(3):e33275 [PMID: 22479378]
  89. Nat Genet. 2017 Mar;49(3):395-402 [PMID: 28092681]
  90. PLoS Biol. 2017 Apr 18;15(4):e2001741 [PMID: 28419091]
  91. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2790-4 [PMID: 8610119]
  92. PLoS One. 2017 Mar 23;12(3):e0174197 [PMID: 28333978]
  93. Antibiotics (Basel). 2021 Jul 15;10(7): [PMID: 34356778]
  94. World J Microbiol Biotechnol. 2013 Jun;29(6):975-82 [PMID: 23329063]
  95. Front Microbiol. 2021 Jun 11;12:659545 [PMID: 34177837]
  96. Mol Biotechnol. 2020 Jul;62(6-7):335-343 [PMID: 32236842]
  97. Lancet Respir Med. 2017 Mar 15;: [PMID: 28344011]
  98. Lancet Infect Dis. 2018 Jul;18(7):779-787 [PMID: 29685458]
  99. Curr Microbiol. 2005 Sep;51(3):141-7 [PMID: 16091848]
  100. BMC Infect Dis. 2018 Apr 2;18(1):149 [PMID: 29606091]
  101. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28993339]
  102. Nature. 2000 Sep 21;407(6802):340-8 [PMID: 11014183]
  103. Eur Respir J. 2017 Dec 28;50(6): [PMID: 29284687]
  104. Antimicrob Agents Chemother. 1995 Mar;39(3):769-70 [PMID: 7540819]
  105. Expert Opin Investig Drugs. 2003 Aug;12(8):1297-312 [PMID: 12882618]
  106. J Chemother. 2017 Feb;29(1):14-18 [PMID: 27380108]
  107. Trop Med Infect Dis. 2020 Sep 30;5(4): [PMID: 33007895]
  108. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13206-11 [PMID: 21788497]
  109. Clin Microbiol Infect. 2014 May;20(5):O278-84 [PMID: 24102832]

MeSH Term

Drug Resistance, Microbial
Genotype
Humans
Microbial Sensitivity Tests
Mutation
Mycobacterium tuberculosis
Streptomycin
Tuberculosis
Tuberculosis, Multidrug-Resistant

Chemicals

Streptomycin

Word Cloud

Created with Highcharts 10.0.0resistanceSTRtuberculosismutationsdrugproblemstreptomycinmechanismsresistantlineagesoutbreaksimpactmulti-drugairbornepathogenresponsiblepresentmajorpublichealthworsenedemergenceacquireddevelopedmaintainedtransmittedpopulationlastdecadesIndeedfrequentlyidentifiedacrossmaincauseworldwidespreadlikelyrelatedlowfrequentunderlyingfitnessbacteriawithdrawalfirst-linetreatmentpotentiallyloweredimportancestudyingHoweverprevalenceremainshighunderestimatedcurrentgenotypicmethodsfoundMDRextensivelyXDRstrainsdifferentgeographicregionsThereforecontributionneglectedreviewdetailwell-knownnovelcandidategenesadditionaimprovideinsightspossibleroledevelopmentNeglectedContributionStreptomycinTuberculosisDrugResistanceProblemMycobacteriumantibioticdrug-resistancemultidrug-resistancelevel

Similar Articles

Cited By