Drug Discovery for Using Structure-Based Computer-Aided Drug Design Approach.

Murtala A Ejalonibu, Segun A Ogundare, Ahmed A Elrashedy, Morufat A Ejalonibu, Monsurat M Lawal, Ndumiso N Mhlongo, Hezekiel M Kumalo
Author Information
  1. Murtala A Ejalonibu: Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa.
  2. Segun A Ogundare: Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye 120107, Nigeria.
  3. Ahmed A Elrashedy: Natural and Microbial Product Department, National Research Centre, Dokki 12622, Egypt.
  4. Morufat A Ejalonibu: Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa. ORCID
  5. Monsurat M Lawal: Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa. ORCID
  6. Ndumiso N Mhlongo: Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa.
  7. Hezekiel M Kumalo: Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa.

Abstract

Developing new, more effective antibiotics against resistant that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.

Keywords

References

  1. Tuberculosis (Edinb). 2010 Jul;90(4):225-35 [PMID: 20488753]
  2. Nat Chem Biol. 2007 Jun;3(6):323-4 [PMID: 17496888]
  3. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13 [PMID: 26400175]
  4. Int J Mycobacteriol. 2014 Dec;3(4):276-82 [PMID: 26786627]
  5. PLoS One. 2011;6(12):e28428 [PMID: 22164290]
  6. Curr Med Chem. 2006;13(25):2995-3003 [PMID: 17073642]
  7. J Clin Microbiol. 2017 Nov;55(11):3267-3282 [PMID: 28904183]
  8. Pathog Dis. 2017 Jan 1;75(1): [PMID: 28087649]
  9. J Chem Inf Model. 2012 Nov 26;52(11):2864-75 [PMID: 23088335]
  10. J Korean Med Sci. 2020 Nov 02;35(42):e379 [PMID: 33140591]
  11. Chem Biol. 2003 Sep;10(9):787-97 [PMID: 14522049]
  12. Proteins. 2009;77 Suppl 9:114-22 [PMID: 19768677]
  13. J Biomol Struct Dyn. 2020 Dec 31;:1-10 [PMID: 33382017]
  14. J Comput Chem. 2005 Dec;26(16):1668-88 [PMID: 16200636]
  15. Antimicrob Agents Chemother. 2018 Jul 27;62(8): [PMID: 29784848]
  16. Sci Rep. 2018 Aug 16;8(1):12238 [PMID: 30116003]
  17. Molecules. 2015 Jul 22;20(7):13384-421 [PMID: 26205061]
  18. Int J Mycobacteriol. 2017 Apr-Jun;6(2):142-148 [PMID: 28559515]
  19. Drug Des Devel Ther. 2017 Mar 02;11:563-574 [PMID: 28280303]
  20. J R Soc Interface. 2012 Dec 7;9(77):3196-207 [PMID: 22933186]
  21. Biochemistry. 2008 Apr 8;47(14):4228-36 [PMID: 18335995]
  22. Nat Rev Drug Discov. 2005 Aug;4(8):649-63 [PMID: 16056391]
  23. Science. 2008 Aug 8;321(5890):792-4 [PMID: 18687952]
  24. Curr Opin Chem Biol. 2008 Jun;12(3):372-8 [PMID: 18331851]
  25. Antimicrob Agents Chemother. 2002 Feb;46(2):267-74 [PMID: 11796329]
  26. Chem Biol. 2015 Jul 23;22(7):917-27 [PMID: 26097035]
  27. Future Med Chem. 2011 Apr;3(6):735-50 [PMID: 21554079]
  28. Annu Rev Biophys Biomol Struct. 1998;27:249-84 [PMID: 9646869]
  29. J Med Chem. 2016 Oct 13;59(19):9269-9275 [PMID: 27589670]
  30. Comb Chem High Throughput Screen. 2012 May 1;15(4):328-37 [PMID: 22221065]
  31. ACS Med Chem Lett. 2010 Jul 13;1(8):371-5 [PMID: 24900220]
  32. J Mol Graph Model. 2021 Jan;102:107770 [PMID: 33065513]
  33. J Phys Chem B. 2016 Aug 25;120(33):8313-20 [PMID: 27082121]
  34. Drug Des Devel Ther. 2016 Mar 11;10:1147-57 [PMID: 27042006]
  35. Methods Mol Biol. 2016;1425:121-37 [PMID: 27311465]
  36. Comput Struct Biotechnol J. 2021 Jun 24;19:3708-3719 [PMID: 34285773]
  37. Tuberculosis (Edinb). 2009 Sep;89(5):354-63 [PMID: 19783214]
  38. Tuberculosis (Edinb). 2011 Jan;91(1):8-13 [PMID: 20980200]
  39. Int J Tuberc Lung Dis. 2012 Jun;16(6):724-32 [PMID: 22613684]
  40. Curr Protein Pept Sci. 2007 Aug;8(4):365-75 [PMID: 17696869]
  41. J Comput Aided Mol Des. 2008 Mar-Apr;22(3-4):133-9 [PMID: 18338228]
  42. Lancet Infect Dis. 2015 Nov;15(11):1357-60 [PMID: 26321650]
  43. Biochem J. 2001 Feb 1;353(Pt 3):453-8 [PMID: 11171040]
  44. N Engl J Med. 2015 Nov 26;373(22):2149-60 [PMID: 26605929]
  45. Biochemistry. 2012 Jun 19;51(24):4868-79 [PMID: 22607697]
  46. Expert Opin Drug Discov. 2006 Jul;1(2):103-10 [PMID: 23495794]
  47. N Engl J Med. 2015 May 28;372(22):2127-35 [PMID: 26017823]
  48. Clin Microbiol Rev. 2016 Oct;29(4):915-26 [PMID: 27608937]
  49. Curr Comput Aided Drug Des. 2010 Mar;6(1):37-49 [PMID: 20370694]
  50. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  51. Molecules. 2018 Feb 27;23(3): [PMID: 29495447]
  52. J Proteome Res. 2015 Mar 6;14(3):1445-54 [PMID: 25664397]
  53. Mol Microbiol. 2007 Feb;63(4):1096-106 [PMID: 17238915]
  54. Nucleic Acids Res. 2009 Jan;37(Database issue):D499-508 [PMID: 18835847]
  55. BMC Bioinformatics. 2009 Jun 02;10:168 [PMID: 19486540]
  56. J Mol Graph Model. 2014 Feb;47:37-43 [PMID: 24316937]
  57. J Chem Inf Model. 2013 Sep 23;53(9):2409-22 [PMID: 23901876]
  58. Tuber Lung Dis. 1997;78(2):117-22 [PMID: 9692180]
  59. Nat Rev Drug Discov. 2011 Jun 24;10(7):507-19 [PMID: 21701501]
  60. Biochem Biophys Res Commun. 2017 Sep 30;491(4):1105-1111 [PMID: 28789944]
  61. Antimicrob Agents Chemother. 2009 Sep;53(9):3720-5 [PMID: 19528280]
  62. Drug Discov Today. 2006 Aug;11(15-16):741-8 [PMID: 16846802]
  63. Tuberculosis (Edinb). 2015 Mar;95(2):149-54 [PMID: 25547657]
  64. Microbiology (Reading). 2000 Feb;146 ( Pt 2):289-296 [PMID: 10708367]
  65. Curr Top Med Chem. 2010;10(1):127-41 [PMID: 19929824]
  66. J Med Chem. 2000 Dec 14;43(25):4759-67 [PMID: 11123984]
  67. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  68. Mini Rev Med Chem. 2007 Feb;7(2):181-9 [PMID: 17305592]
  69. Chem Res Toxicol. 2021 May 17;34(5):1348-1354 [PMID: 33913699]
  70. J Comput Aided Mol Des. 2000 May;14(4):383-401 [PMID: 10815774]
  71. Biol Chem. 2011 Apr;392(4):277-89 [PMID: 21294681]
  72. Bioorg Chem. 2018 Oct;80:319-333 [PMID: 29986181]
  73. RSC Med Chem. 2020 Nov 6;11(12):1354-1365 [PMID: 34085044]
  74. Antimicrob Agents Chemother. 2015 Apr;59(4):2045-50 [PMID: 25605360]
  75. J Comput Chem. 2004 Sep;25(12):1463-73 [PMID: 15224390]
  76. Front Chem. 2020 Apr 28;8:343 [PMID: 32411671]
  77. J Biomol Struct Dyn. 2020 Jun;38(9):2521-2532 [PMID: 31244382]
  78. J Med Chem. 2007 Apr 19;50(8):1925-32 [PMID: 17367122]
  79. Nature. 2004 Dec 16;432(7019):862-5 [PMID: 15602552]
  80. Int J Mol Sci. 2019 Jun 06;20(11): [PMID: 31174387]
  81. Molecules. 2020 May 27;25(11): [PMID: 32471211]
  82. Proteins. 2003 Sep 1;52(4):609-23 [PMID: 12910460]
  83. Trends Biochem Sci. 1989 Jul;14(7):304-9 [PMID: 2672455]
  84. Bioinformatics. 2005 May 1;21(9):1908-16 [PMID: 15701681]
  85. J Biomol Struct Dyn. 2020 Jul;38(11):3396-3410 [PMID: 31422761]
  86. Drug Discov Today. 2016 Feb;21(2):288-98 [PMID: 26743596]
  87. J Chem Inf Model. 2012 Jul 23;52(7):1806-11 [PMID: 22758389]
  88. Molecules. 2020 Feb 04;25(3): [PMID: 32033144]
  89. Antimicrob Agents Chemother. 2004 Aug;48(8):3006-9 [PMID: 15273113]
  90. Antimicrob Agents Chemother. 2009 May;53(5):2100-9 [PMID: 19237648]
  91. J Mol Biol. 1996 Aug 23;261(3):470-89 [PMID: 8780787]
  92. Trends Pharmacol Sci. 2008 Nov;29(11):576-81 [PMID: 18799223]
  93. J Biomol Struct Dyn. 2019 Mar;37(5):1254-1269 [PMID: 29557724]
  94. Trends Mol Med. 2011 Jan;17(1):25-33 [PMID: 21071272]
  95. J Chem Inf Model. 2012 Apr 23;52(4):867-81 [PMID: 22435959]
  96. Chembiochem. 2016 Dec 2;17(23):2264-2273 [PMID: 27653508]
  97. J Chem Inf Model. 2010 Feb 22;50(2):205-16 [PMID: 20088575]
  98. Int J Tuberc Lung Dis. 2003 Jan;7(1):6-21 [PMID: 12701830]
  99. Am J Ophthalmol. 2006 May;141(5):850-8 [PMID: 16546110]
  100. Mol Inform. 2021 May;40(5):e2000211 [PMID: 33283460]
  101. F1000Res. 2013 Sep 30;2:199 [PMID: 24555097]
  102. J Cheminform. 2017 May 4;9(1):27 [PMID: 29086046]
  103. Nat Rev Drug Discov. 2013 May;12(5):388-404 [PMID: 23629506]
  104. F1000Res. 2014 Mar 18;3:75 [PMID: 24741442]
  105. Org Biomol Chem. 2017 Dec 13;15(48):10245-10255 [PMID: 29182187]
  106. J Comput Aided Mol Des. 2012 Jan;26(1):13-4 [PMID: 22160556]
  107. PLoS One. 2017 Sep 5;12(9):e0183060 [PMID: 28873466]
  108. J Chem Inf Comput Sci. 2001 May-Jun;41(3):702-12 [PMID: 11410049]
  109. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W582-9 [PMID: 20478829]
  110. Curr Med Chem. 2013;20(23):2839-60 [PMID: 23651302]
  111. Nat Med. 1996 Jun;2(6):662-7 [PMID: 8640557]
  112. Nucleic Acids Res. 2015 Jul 1;43(W1):W436-42 [PMID: 25956651]
  113. Nat Rev Drug Discov. 2005 Jan;4(1):45-58 [PMID: 15688072]
  114. Comb Chem High Throughput Screen. 2009 Dec;12(10):1000-16 [PMID: 20025565]
  115. J Comput Aided Mol Des. 1998 Jul;12(4):383-96 [PMID: 9777496]
  116. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  117. Appl Environ Microbiol. 2016 Jan 15;82(6):1958-1965 [PMID: 26773086]
  118. Clin Infect Dis. 2000 Feb;30(2):293-9 [PMID: 10671331]
  119. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32571810]
  120. Arch Pharm Res. 2017 Jun;40(6):676-694 [PMID: 28456911]
  121. BMC Infect Dis. 2015 Mar 25;15:153 [PMID: 25887373]
  122. Curr Protein Pept Sci. 2007 Aug;8(4):329-51 [PMID: 17696867]
  123. Bioorg Med Chem Lett. 2013 May 15;23(10):3096-100 [PMID: 23562055]
  124. J Enzyme Inhib Med Chem. 2016;31(sup2):201-207 [PMID: 27241561]
  125. J Antimicrob Chemother. 2011 Jul;66(7):1417-30 [PMID: 21558086]
  126. BMC Bioinformatics. 2010 Jul 12;11:374 [PMID: 20624289]
  127. J Mol Graph Model. 2015 Jul;60:124-31 [PMID: 26043661]
  128. Int J Mol Sci. 2019 Apr 26;20(9): [PMID: 31027337]
  129. Ann Intern Med. 2016 Jul 19;165(2):125-33 [PMID: 27136449]
  130. J Antimicrob Chemother. 2011 Mar;66(3):564-73 [PMID: 21393229]
  131. J Antibiot (Tokyo). 2019 Oct;72(10):719-728 [PMID: 31292530]
  132. Curr Drug Metab. 2007 Dec;8(8):839-51 [PMID: 18220565]
  133. Curr Top Med Chem. 2014;14(16):1923-38 [PMID: 25262799]
  134. Sci Rep. 2017 Jul 5;7(1):4653 [PMID: 28680150]
  135. Arch Pharm (Weinheim). 2015 Mar;348(3):179-87 [PMID: 25690564]
  136. Bioorg Med Chem. 2016 Mar 1;24(5):1023-31 [PMID: 26822568]
  137. Methods Mol Biol. 2011;672:299-323 [PMID: 20838974]
  138. Tuberculosis (Edinb). 2012 Jan;92(1):72-83 [PMID: 21708485]
  139. Biochem Pharmacol. 2016 Apr 15;106:46-55 [PMID: 26867495]
  140. Drug Discov Today Technol. 2006 Autumn;3(3):307-13 [PMID: 24980533]
  141. Antibiotics (Basel). 2014 Jul 02;3(3):317-40 [PMID: 27025748]
  142. J Acquir Immune Defic Syndr. 2007 Oct 1;46(2):125-33 [PMID: 17721395]
  143. Bioorg Med Chem. 2016 Sep 15;24(18):4499-4508 [PMID: 27477207]
  144. AAPS J. 2012 Mar;14(1):133-41 [PMID: 22281989]
  145. Eur J Med Chem. 2018 Jul 15;155:754-763 [PMID: 29940465]
  146. Drug Discov Today. 2006 Feb;11(3-4):175-80 [PMID: 16533716]
  147. Future Microbiol. 2012 Jul;7(7):823-37 [PMID: 22827305]
  148. Curr Opin Pharmacol. 2018 Oct;42:81-94 [PMID: 30144650]
  149. Antimicrob Agents Chemother. 2008 Jun;52(6):2027-34 [PMID: 18378710]
  150. Int J Infect Dis. 2017 Mar;56:1-5 [PMID: 28232006]
  151. Drug Des Devel Ther. 2018 May 01;12:1065-1079 [PMID: 29750019]
  152. Antimicrob Agents Chemother. 2002 Sep;46(9):2765-71 [PMID: 12183226]
  153. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954 [PMID: 27899562]
  154. J Chem Inf Model. 2011 Jun 27;51(6):1307-14 [PMID: 21604800]
  155. Eur J Med Chem. 2016 Oct 21;122:216-231 [PMID: 27371925]
  156. Science. 2004 Mar 19;303(5665):1813-8 [PMID: 15031495]
  157. Brief Bioinform. 2009 Sep;10(5):579-91 [PMID: 19433475]
  158. Mol Microbiol. 2008 Sep;69(5):1316-29 [PMID: 18651841]
  159. Sci Rep. 2016 Jun 10;6:27792 [PMID: 27283217]
  160. J Chem Inf Model. 2006 Mar-Apr;46(2):836-43 [PMID: 16563015]
  161. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9677-82 [PMID: 10944230]
  162. Int J Infect Dis. 2021 Dec;113 Suppl 1:S96-S99 [PMID: 33713815]
  163. Microbiol Spectr. 2014 Aug;2(4):MGM2-0023-2013 [PMID: 26104205]
  164. ChemMedChem. 2008 Aug;3(8):1250-68 [PMID: 18663709]
  165. J Chem Inf Model. 2005 Sep-Oct;45(5):1369-75 [PMID: 16180913]
  166. mBio. 2017 Jan 17;8(1): [PMID: 28096490]
  167. Eur J Pharmacol. 2009 Dec 25;625(1-3):90-100 [PMID: 19835861]
  168. J Med Chem. 2014 Jun 26;57(12):5293-305 [PMID: 24870926]
  169. Acta Trop. 2011 Jul;119(1):5-10 [PMID: 21515239]
  170. J Med Chem. 2004 May 6;47(10):2499-510 [PMID: 15115393]
  171. Antimicrob Agents Chemother. 2004 Feb;48(2):596-601 [PMID: 14742214]
  172. J Med Chem. 2015 Feb 26;58(4):2036-41 [PMID: 25658656]
  173. J Inorg Biochem. 2014 Mar;132:21-9 [PMID: 24188534]
  174. Nat Protoc. 2009;4(1):1-13 [PMID: 19131951]
  175. 3 Biotech. 2021 Apr;11(4):204 [PMID: 33824847]
  176. Sci Rep. 2017 Mar 08;7:44116 [PMID: 28272524]
  177. J Chem Inf Model. 2015 Nov 23;55(11):2324-37 [PMID: 26479676]
  178. Curr Opin Chem Biol. 2017 Jun;38:117-126 [PMID: 28494316]
  179. Nucleic Acids Res. 2012 Apr;40(7):3018-30 [PMID: 22156370]
  180. J Chem Inf Model. 2011 Jun 27;51(6):1364-75 [PMID: 21618971]
  181. Nature. 2000 Jun 22;405(6789):962-6 [PMID: 10879539]
  182. Curr Top Med Chem. 2010;10(1):95-115 [PMID: 19929826]
  183. Biophys J. 2015 Jan 20;108(2):228-9 [PMID: 25606670]
  184. J Antibiot (Tokyo). 1953 Dec;6(4):182 [PMID: 13152032]
  185. J Mol Model. 2011 Jan;17(1):201-8 [PMID: 20383726]
  186. Drug Discov Today. 2011 Sep;16(17-18):831-9 [PMID: 21810482]
  187. J Antimicrob Chemother. 2009 Nov;64(5):1052-61 [PMID: 19734171]
  188. J Biomol Struct Dyn. 2011 Jun;28(6):907-17 [PMID: 21469751]
  189. Expert Opin Drug Discov. 2008 Aug;3(8):841-51 [PMID: 23484962]
  190. Protein Sci. 2018 Jan;27(1):129-134 [PMID: 28875543]
  191. Structure. 1996 Nov 15;4(11):1317-24 [PMID: 8939755]
  192. Antimicrob Agents Chemother. 2012 Apr;56(4):1797-809 [PMID: 22252828]
  193. J Med Chem. 2014 Jun 12;57(11):4487-97 [PMID: 24694071]
  194. Int J Appl Basic Med Res. 2013 Jan;3(1):1-2 [PMID: 23776831]
  195. Annu Rev Microbiol. 2007;61:35-50 [PMID: 18035606]
  196. Methods Mol Biol. 2011;716:23-38 [PMID: 21318898]
  197. Tuberculosis (Edinb). 2009 Sep;89(5):334-53 [PMID: 19758845]
  198. Antimicrob Agents Chemother. 2014;58(3):1479-87 [PMID: 24366731]
  199. Eur J Med Chem. 2015 Mar 6;92:401-14 [PMID: 25585006]
  200. Mol Microbiol. 2006 Dec;62(5):1220-7 [PMID: 17074073]
  201. J Antimicrob Chemother. 2003 Nov;52(5):790-5 [PMID: 14563891]
  202. Front Microbiol. 2013 Jul 23;4:208 [PMID: 23888158]
  203. J Natl Cancer Inst. 2011 Apr 6;103(7):553-61 [PMID: 21422402]
  204. Antimicrob Agents Chemother. 2005 Jun;49(6):2153-63 [PMID: 15917508]
  205. Arch Pharm Res. 2015 Sep;38(9):1686-701 [PMID: 26208641]
  206. Curr Pharm Des. 2016;22(5):572-81 [PMID: 26601966]
  207. Trends Microbiol. 2011 Feb;19(2):65-74 [PMID: 21129975]
  208. Pharmacol Rev. 2011 Mar;63(1):59-126 [PMID: 21228259]
  209. Nat Med. 2013 Sep;19(9):1157-60 [PMID: 23913123]
  210. Expert Opin Drug Discov. 2012 Oct;7(10):969-88 [PMID: 22860803]
  211. Microb Biotechnol. 2009 Jan;2(1):40-61 [PMID: 21261881]
  212. Molecules. 2017 Jan 17;22(1): [PMID: 28106753]
  213. JAMA Intern Med. 2018 Nov 1;178(11):1451-1457 [PMID: 30264133]
  214. Cold Spring Harb Perspect Med. 2015 Apr 15;5(8):a021147 [PMID: 25877396]
  215. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W387-92 [PMID: 22523085]
  216. Tuberculosis (Edinb). 2009 Mar;89(2):109-13 [PMID: 19249243]

Grants

  1. 110906./National Research Foundation

MeSH Term

Antitubercular Agents
Artificial Intelligence
Drug Design
Humans
Molecular Structure
Mycobacterium tuberculosis
Quantum Theory
Software
Structure-Activity Relationship

Chemicals

Antitubercular Agents

Word Cloud

Created with Highcharts 10.0.0drugdesigncomputationalnewtuberculosistechniquesdevelopmentsoftwaredrugsresistantglobalcompoundcanmethodsusedcombatresistancereviewanti-tuberculosisavailabledatabasesanti-tubercularDrugDevelopingeffectiveantibioticsinhibitessentialproteinsappealingstrategycombatingTBepidemicFindingtargetparticularcavityproteininterruptenzymaticactivitycrucialobjectivediscoverysubjecteddifferenttestsincludingclinicaltrialsstudyeffectivenesspathogenhostrecenttimesinvolveanalyticalenhancedchancesopposedtraditionallaborioustime-consumingimprovedgenerationdevelopoptimizeactivecompoundsfuturechemotherapeuticprovidesoverviewevolutionexistingmanagementdevelopedbasedcontributionsAlsoshowappraisalinsightapplicationfeaturesperspectiveinvolvingmachinelearningartificialintelligencequantumcomputingCRISPRcombinationprospectivepathwayDiscoveryUsingStructure-BasedComputer-AidedDesignApproachMycobacteriummoleculardockingstructure-based

Similar Articles

Cited By (24)