Interplay between DsbA1, DsbA2 and C8J_1298 Periplasmic Oxidoreductases of and Their Impact on Bacterial Physiology and Pathogenesis.

Anna M Banaś, Katarzyna M Bocian-Ostrzycka, Stanisław Dunin-Horkawicz, Jan Ludwiczak, Piotr Wilk, Marta Orlikowska, Agnieszka Wyszyńska, Maria Dąbrowska, Maciej Plichta, Marta Spodzieja, Marta A Polańska, Agata Malinowska, Elżbieta Katarzyna Jagusztyn-Krynicka
Author Information
  1. Anna M Banaś: Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, 02-096 Warsaw, Poland. ORCID
  2. Katarzyna M Bocian-Ostrzycka: Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, 02-096 Warsaw, Poland.
  3. Stanisław Dunin-Horkawicz: Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
  4. Jan Ludwiczak: Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland. ORCID
  5. Piotr Wilk: Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland. ORCID
  6. Marta Orlikowska: Faculty of Chemistry, University of Gdańsk, 80-308 Gdansk, Poland.
  7. Agnieszka Wyszyńska: Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, 02-096 Warsaw, Poland. ORCID
  8. Maria Dąbrowska: Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, 02-096 Warsaw, Poland. ORCID
  9. Maciej Plichta: Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland. ORCID
  10. Marta Spodzieja: Faculty of Chemistry, University of Gdańsk, 80-308 Gdansk, Poland. ORCID
  11. Marta A Polańska: Department of Animal Physiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw, 02-096 Warsaw, Poland.
  12. Agata Malinowska: Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland. ORCID
  13. Elżbieta Katarzyna Jagusztyn-Krynicka: Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, 02-096 Warsaw, Poland. ORCID

Abstract

The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of . The oxidizing Dsb system of this pathogen is unique because it consists of two monomeric DsbAs (DsbA1 and DsbA2) and one dimeric bifunctional protein (C8J_1298). Previously, we showed that DsbA1 and C8J_1298 are redundant. Here, we unraveled the interaction between the two monomeric DsbAs by in vitro and in vivo experiments and by solving their structures and found that both monomeric DsbAs are dispensable proteins. Their structures confirmed that they are homologs of EcDsbL. The slight differences seen in the surface charge of the proteins do not affect the interaction with their redox partner. Comparative proteomics showed that several respiratory proteins, as well as periplasmic transport proteins, are targets of the Dsb system. Some of these, both donors and electron acceptors, are essential elements of the respiratory process under oxygen-limiting conditions in the host intestine. The data presented provide detailed information on the function of the Dsb system, identifying it as a potential target for novel antibacterial molecules.

Keywords

References

  1. J Proteomics. 2012 Jul 16;75(13):4062-73 [PMID: 22641154]
  2. Microb Pathog. 2009 Jul;47(1):8-15 [PMID: 19397993]
  3. Protein Sci. 1993 May;2(5):717-26 [PMID: 8495194]
  4. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  5. Front Microbiol. 2016 Dec 26;7:2117 [PMID: 28082970]
  6. J Biol Chem. 2009 Apr 10;284(15):10150-9 [PMID: 19181668]
  7. J Mol Biol. 1986 May 5;189(1):113-30 [PMID: 3537305]
  8. Nat Methods. 2005 Sep;2(9):667-75 [PMID: 16118637]
  9. J Mol Biol. 2009 Dec 18;394(5):931-43 [PMID: 19815019]
  10. Microbiology (Reading). 2012 Jun;158(Pt 6):1645-1655 [PMID: 22403188]
  11. Sci Rep. 2017 Jan 16;7:40117 [PMID: 28091524]
  12. J Biol Chem. 2010 Jan 29;285(5):3300-9 [PMID: 19940132]
  13. Infect Immun. 1998 Aug;66(8):3909-17 [PMID: 9673279]
  14. J Biol Chem. 2004 Jun 25;279(26):27078-87 [PMID: 15105427]
  15. J Mol Biol. 2009 Oct 2;392(4):952-66 [PMID: 19631659]
  16. Cell. 1991 Nov 1;67(3):581-9 [PMID: 1934062]
  17. J Mol Biol. 2008 Jul 18;380(4):667-80 [PMID: 18565543]
  18. Environ Microbiol. 2018 Apr;20(4):1374-1388 [PMID: 29318721]
  19. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67 [PMID: 21460454]
  20. Adv Microb Physiol. 2019;74:239-329 [PMID: 31126532]
  21. EcoSal Plus. 2019 Feb;8(2): [PMID: 30761987]
  22. J Med Microbiol. 2011 May;60(Pt 5):661-669 [PMID: 21233296]
  23. Antioxid Redox Signal. 2018 Sep 1;29(7):653-666 [PMID: 29237285]
  24. J Biol Chem. 2014 Jul 11;289(28):19810-22 [PMID: 24831013]
  25. Science. 2021 Aug 20;373(6557):871-876 [PMID: 34282049]
  26. Mol Microbiol. 2015 Jun;96(6):1298-317 [PMID: 25825009]
  27. J Biol Chem. 2010 Jun 11;285(24):18423-32 [PMID: 20233716]
  28. PLoS One. 2013 Nov 14;8(11):e80210 [PMID: 24244651]
  29. Antioxid Redox Signal. 2014 Feb 1;20(4):606-17 [PMID: 23901809]
  30. Appl Environ Microbiol. 2018 Aug 1;84(16): [PMID: 29915112]
  31. Microbiology (Reading). 2009 Dec;155(Pt 12):4014-4024 [PMID: 19797361]
  32. mBio. 2013 Dec 10;4(6):e00912-13 [PMID: 24327342]
  33. Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9 [PMID: 18094468]
  34. Acta Crystallogr D Biol Crystallogr. 2013 Nov;69(Pt 11):2276-86 [PMID: 24189240]
  35. Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1074-80 [PMID: 19770504]
  36. BMC Microbiol. 2015 Jul 04;15:135 [PMID: 26141380]
  37. Microbiology (Reading). 1999 Aug;145 ( Pt 8):2145-2151 [PMID: 10463181]
  38. J Mol Biol. 1996 Jul 19;260(3):289-98 [PMID: 8757792]
  39. Antioxid Redox Signal. 2011 May 1;14(9):1729-60 [PMID: 21241169]
  40. Biochim Biophys Acta. 2014 Aug;1844(8):1402-14 [PMID: 24576574]
  41. J Biol Chem. 2008 Nov 21;283(47):32452-61 [PMID: 18715864]
  42. Front Microbiol. 2017 Oct 10;8:1908 [PMID: 29067004]
  43. J Med Chem. 2015 Jan 22;58(2):577-87 [PMID: 25470204]
  44. Antioxid Redox Signal. 2009 Jul;11(7):1485-500 [PMID: 19265485]
  45. Cell. 1995 Dec 15;83(6):947-55 [PMID: 8521518]
  46. PLoS One. 2014 Sep 02;9(9):e106247 [PMID: 25181355]
  47. Nat Microbiol. 2018 Mar;3(3):270-280 [PMID: 29463925]
  48. Biochim Biophys Acta. 2008 Sep;1778(9):1897-929 [PMID: 17964535]
  49. Methods Mol Biol. 2013;966:325-36 [PMID: 23299744]
  50. Mol Cell. 2008 Sep 26;31(6):896-908 [PMID: 18922471]
  51. Can J Microbiol. 2001 Aug;47(8):711-21 [PMID: 11575497]
  52. Bioorg Chem. 2014 Dec;57:222-230 [PMID: 25108804]
  53. PLoS One. 2020 Mar 23;15(3):e0230366 [PMID: 32203539]
  54. Sci Rep. 2018 Oct 19;8(1):15478 [PMID: 30341307]
  55. Vet Res. 2011 Jun 29;42:82 [PMID: 21714866]
  56. Crit Rev Microbiol. 2019 Aug;45(4):433-450 [PMID: 31190593]
  57. Lancet. 1983 Feb 5;1(8319):287-90 [PMID: 6130305]
  58. Int J Med Microbiol. 2018 Dec;308(8):977-985 [PMID: 30131271]
  59. Nat Rev Microbiol. 2018 Sep;16(9):551-565 [PMID: 29892020]
  60. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  61. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  62. Methods Mol Biol. 2017;1512:163-169 [PMID: 27885606]
  63. EFSA J. 2021 Feb 27;19(2):e06406 [PMID: 33680134]
  64. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1917-26 [PMID: 26976588]
  65. Front Microbiol. 2015 Jul 21;6:724 [PMID: 26257713]
  66. Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71(Pt 12):2386-95 [PMID: 26627647]
  67. Cell. 2006 Nov 17;127(4):789-801 [PMID: 17110337]
  68. Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67 [PMID: 22505256]
  69. Front Microbiol. 2015 Oct 08;6:1065 [PMID: 26500620]
  70. AIMS Microbiol. 2017 Nov 7;3(4):885-898 [PMID: 31294195]
  71. BMC Microbiol. 2009 Aug 08;9:160 [PMID: 19664234]
  72. FEMS Microbiol Lett. 2009 Nov;300(2):188-94 [PMID: 19824902]
  73. J Infect Dis. 2010 Mar;201(5):776-82 [PMID: 20113177]
  74. FEMS Microbiol Lett. 2018 Aug 1;365(16): [PMID: 29931366]
  75. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  76. Front Microbiol. 2015 Jun 09;6:570 [PMID: 26106374]
  77. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  78. PLoS One. 2016 Dec 28;11(12):e0168485 [PMID: 28030602]
  79. Chem Soc Rev. 2014 Jan 21;43(2):676-706 [PMID: 24141308]
  80. J Mol Biol. 2005 Apr 1;347(3):555-63 [PMID: 15755450]
  81. PLoS One. 2012;7(10):e46563 [PMID: 23056345]
  82. Clin Microbiol Rev. 2015 Jul;28(3):687-720 [PMID: 26062576]
  83. Gene. 1995 Sep 22;163(1):41-6 [PMID: 7557476]
  84. J Biol Chem. 2009 Jun 26;284(26):17835-45 [PMID: 19389711]
  85. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  86. PLoS One. 2011;6(5):e20084 [PMID: 21625391]
  87. Biochim Biophys Acta. 2014 Aug;1844(8):1391-401 [PMID: 24487020]
  88. J Bacteriol. 2009 Jun;191(12):3901-8 [PMID: 19376849]
  89. Ann N Y Acad Sci. 2008 Mar;1125:215-29 [PMID: 18096847]
  90. J Mol Biol. 1995 Mar 17;247(1):28-33 [PMID: 7897659]
  91. J Biol Chem. 2004 Mar 26;279(13):12967-73 [PMID: 14726535]
  92. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1043-7 [PMID: 8503954]
  93. Environ Microbiol. 2019 Feb;21(2):521-530 [PMID: 30307099]
  94. Proteomics Clin Appl. 2009 Aug;3(8):932-46 [PMID: 21136997]
  95. Protein Expr Purif. 2005 May;41(1):207-34 [PMID: 15915565]
  96. Mol Microbiol. 2009 Nov;74(3):742-57 [PMID: 19818021]
  97. Future Microbiol. 2009 Aug;4(6):677-90 [PMID: 19659424]

Grants

  1. 2015/17/B/NZ1/00230/National Science Center
  2. 2018/29/B/NZ1/00140/National Science Center
  3. UMO-2016/21/D/NZ1/02777/National Science Center

MeSH Term

Amino Acid Sequence
Bacterial Physiological Phenomena
Bacterial Proteins
Campylobacter jejuni
Disulfides
Oxidation-Reduction
Oxidoreductases
Periplasm
Periplasmic Proteins
Protein Disulfide-Isomerases
Sequence Homology, Amino Acid

Chemicals

Bacterial Proteins
Disulfides
Periplasmic Proteins
Oxidoreductases
periplasmic protein disulfide oxidoreductase
Protein Disulfide-Isomerases

Word Cloud

Created with Highcharts 10.0.0proteinsDsbstructuressystemmonomericDsbAsDsbA1C8J_1298disulfideproteindetailedtwoDsbA2showedinteractionrespiratorybacterialfamilycatalyzeformationbridgescysteineresiduesstabilizeensureproperfunctioningreportanalysispathwayoxidizingpathogenuniqueconsistsonedimericbifunctionalPreviouslyredundantunraveledvitrovivoexperimentssolvingfounddispensableconfirmedhomologsEcDsbLslightdifferencesseensurfacechargeaffectredoxpartnerComparativeproteomicsseveralwellperiplasmictransporttargetsdonorselectronacceptorsessentialelementsprocessoxygen-limitingconditionshostintestinedatapresentedprovideinformationfunctionidentifyingpotentialtargetnovelantibacterialmoleculesInterplayPeriplasmicOxidoreductasesImpactBacterialPhysiologyPathogenesisCampylobacterjejunicrystalstructurebondsubstratesthioloxidoreductase

Similar Articles

Cited By