Detrimental effects of a failed infection by a co-invasive parasite on a native congeneric parasite and its native host.

K M McIntire, S A Juliano
Author Information
  1. K M McIntire: School of Biological Sciences, Illinois State University, Normal IL 61760.
  2. S A Juliano: School of Biological Sciences, Illinois State University, Normal IL 61760.

Abstract

Biological invaders often are accompanied by co-invasive parasites that can alter ecosystem function and established native host-parasite relationships. When these co-invasive parasites establish in a community, they can affect native host fitness and native parasite infection intensity, prevalence, and success within the native host. The mosquito, , is North American host to protozoan parasite, . In geographic regions invaded by the mosquito , may also be infected by co-invasive parasite, . We tested the hypotheses that: 1) The presence of a co-invasive parasite will negatively affect native parasite fitness, yielding decreased infection intensity, prevalence, and infection success, which could be caused by immune induction of the host or inter-parasite competition, and 2) Coinfection with the native and co-invasive parasites will negatively affect host fitness, yielding increased larval development time and decreased survival and reproductive fitness, caused by increased costs of infection. In our coinfection experiments we find that any exposure to the co-invasive parasite resulted in decreased survivorship and increased development time of the host , with or without coinfection by the native parasite. Exposure to both co-invasive and native parasites yielded reduced native parasite infection intensity in the host larva and reduced native parasite propagule production in the resulting male adults. Together, these results indicate not only the potential for the co-invasive parasite to alter the native host-parasite relationship, but to impact native host population dynamics.

Keywords

References

  1. Biol Invasions. 2002 Sep 1;4(3):283-297 [PMID: 19777120]
  2. Int J Parasitol. 2011 Aug 1;41(9):943-9 [PMID: 21624371]
  3. J Am Mosq Control Assoc. 1994 Sep;10(3):413-8 [PMID: 7807086]
  4. Proc Biol Sci. 2004 Feb 7;271 Suppl 3:S104-6 [PMID: 15101433]
  5. PLoS One. 2017 Sep 13;12(9):e0184573 [PMID: 28902912]
  6. Science. 2014 Aug 1;345(6196):578-82 [PMID: 25082704]
  7. J Am Mosq Control Assoc. 2015 Sep;31(3):233-41 [PMID: 26375904]
  8. Am Nat. 2009 Jun;173(6):E177-84 [PMID: 19320595]
  9. J Med Entomol. 1992 Nov;29(6):968-73 [PMID: 1460637]
  10. J Evol Biol. 2009 Mar;22(3):582-8 [PMID: 19210596]
  11. Parasit Vectors. 2020 Apr 10;13(1):188 [PMID: 32276649]
  12. J Am Mosq Control Assoc. 2007;23(2 Suppl):30-4 [PMID: 17853595]
  13. Vector Borne Zoonotic Dis. 2007 Spring;7(1):76-85 [PMID: 17417960]
  14. Int J Parasitol Parasites Wildl. 2017 Apr 06;6(3):361-363 [PMID: 30951572]
  15. Proc Biol Sci. 2002 Mar 7;269(1490):529-33 [PMID: 11886647]
  16. Proc Biol Sci. 2004 May 7;271 Suppl 4:S186-8 [PMID: 15252979]
  17. Int J Parasitol Parasites Wildl. 2014 Apr 24;3(2):171-7 [PMID: 25180161]
  18. PLoS One. 2014 Sep 10;9(9):e106401 [PMID: 25208329]
  19. J Anim Ecol. 2020 Jul;89(7):1559-1569 [PMID: 32291765]
  20. J Parasitol. 2015 Jun;101(3):290-6 [PMID: 25664653]
  21. Science. 1991 Jul 12;253(5016):189-91 [PMID: 1853204]
  22. J Med Entomol. 1977 Dec 24;14(4):437-40 [PMID: 609074]
  23. J Anim Ecol. 2011 Jan;80(1):19-38 [PMID: 20735792]
  24. PLoS Negl Trop Dis. 2013 Aug 08;7(8):e2362 [PMID: 23951381]
  25. Nature. 2004 Apr 22;428(6985):840-4 [PMID: 15103373]
  26. J Med Entomol. 2006 Jul;43(4):757-61 [PMID: 16892636]
  27. J Evol Biol. 2015 Jan;28(1):1-9 [PMID: 25400248]
  28. J Protozool. 1969 Aug;16(3):546-70 [PMID: 4981009]
  29. Science. 2000 Jan 21;287(5452):443-9 [PMID: 10642539]
  30. Parasitol Today. 1999 Apr;15(4):153-6 [PMID: 10322337]
  31. J Am Mosq Control Assoc. 1990 Jun;6(2):235-43 [PMID: 2370530]
  32. J Wildl Dis. 2010 Oct;46(4):1152-64 [PMID: 20966266]
  33. J Med Entomol. 2006 Sep;43(5):966-70 [PMID: 17017235]
  34. J Parasitol. 2000 Apr;86(2):228-32 [PMID: 10780537]
  35. J Med Entomol. 1996 Mar;33(2):212-5 [PMID: 8742523]
  36. Mol Ecol. 2008 Oct;17(20):4418-24 [PMID: 18803593]
  37. J Med Entomol. 1987 May;24(3):303-9 [PMID: 3108509]
  38. J Invertebr Pathol. 2003 Sep;84(1):47-53 [PMID: 13678712]
  39. J Med Entomol. 1995 Nov;32(6):847-52 [PMID: 8551508]
  40. Parasitology. 2019 Nov;146(13):1665-1672 [PMID: 31362793]
  41. J Parasitol. 2005 Dec;91(6):1352-7 [PMID: 16539016]
  42. J Parasitol. 1997 Aug;83(4):575-83 [PMID: 9267395]
  43. Biol Invasions. 2018 Aug;20(8):1913-1929 [PMID: 30220875]
  44. J Med Entomol. 1999 May;36(3):313-20 [PMID: 10337101]
  45. J Eukaryot Microbiol. 2003 Sep-Oct;50(5):379-82 [PMID: 14563178]
  46. Trends Parasitol. 2018 Aug;34(8):655-663 [PMID: 29935995]
  47. J Med Entomol. 2003 Jul;40(4):403-10 [PMID: 14680103]
  48. Trends Ecol Evol. 2004 Jul;19(7):385-90 [PMID: 16701290]
  49. J Med Entomol. 2014 Mar;51(2):297-313 [PMID: 24724278]
  50. Int J Parasitol Parasites Wildl. 2017 Apr 07;6(3):364-374 [PMID: 30951574]

Grants

  1. R15 AI094322/NIAID NIH HHS
  2. R15 AI124005/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0nativeparasiteco-invasivehostinfectionparasitesfitnesshost-parasiteaffectintensitydecreasedincreasedcoinfectioncanalterprevalencesuccessmosquitowillnegativelyyieldingcauseddevelopmenttimereducedrelationshipBiologicalinvadersoftenaccompaniedecosystemfunctionestablishedrelationshipsestablishcommunitywithinNorthAmericanprotozoangeographicregionsinvadedmayalsoinfectedtestedhypothesesthat:1presenceimmuneinductioninter-parasitecompetition2CoinfectionlarvalsurvivalreproductivecostsexperimentsfindexposureresultedsurvivorshipwithoutExposureyieldedlarvapropaguleproductionresultingmaleadultsTogetherresultsindicatepotentialimpactpopulationdynamicsDetrimentaleffectsfailedcongenericAedesAscogregarinaco-invasion

Similar Articles

Cited By (1)