Inflammasomes and SARS-CoV-2 Infection.

Juha Kaivola, Tuula Anneli Nyman, Sampsa Matikainen
Author Information
  1. Juha Kaivola: Helsinki Rheumatic Disease and Inflammation Research Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.
  2. Tuula Anneli Nyman: Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372 Oslo, Norway. ORCID
  3. Sampsa Matikainen: Helsinki Rheumatic Disease and Inflammation Research Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.

Abstract

SARS-CoV-2 is a new type of coronavirus that has caused worldwide pandemic. The disease induced by SARS-CoV-2 is called COVID-19. A majority of people with COVID-19 have relatively mild respiratory symptoms. However, a small percentage of COVID-19 patients develop a severe disease where multiple organs are affected. These severe forms of SARS-CoV-2 infections are associated with excessive production of pro-inflammatory cytokines, so called "cytokine storm". Inflammasomes, which are protein complexes of the innate immune system orchestrate development of local and systemic inflammation during virus infection. Recent data suggest involvement of inflammasomes in severe COVID-19. Activation of inflammasome exerts two major effects: it activates caspase-1-mediated processing and secretion of pro-inflammatory cytokines IL-1β and IL-18, and induces inflammatory cell death, pyroptosis, via protein called gasdermin D. Here, we provide comprehensive review of current understanding of the activation and possible functions of different inflammasome structures during SARS-CoV-2 infection and compare that to response caused by influenza A virus. We also discuss how novel SARS-CoV-2 mRNA vaccines activate innate immune response, which is a prerequisite for the activation of protective adaptive immune response.

Keywords

References

  1. Front Immunol. 2020 Dec 18;11:613170 [PMID: 33391283]
  2. Cell Mol Immunol. 2021 May;18(5):1141-1160 [PMID: 33850310]
  3. Nat Commun. 2021 Aug 2;12(1):4664 [PMID: 34341353]
  4. Front Immunol. 2021 Mar 01;12:629193 [PMID: 33732251]
  5. Front Mol Biosci. 2020 Dec 09;7:591873 [PMID: 33363207]
  6. J Biol Chem. 2014 Aug 1;289(31):21716-26 [PMID: 24939850]
  7. Immunity. 2009 Apr 17;30(4):566-75 [PMID: 19362023]
  8. J Immunol. 1999 Jun 15;162(12):7322-9 [PMID: 10358182]
  9. Biochem Biophys Res Commun. 2020 Jun 30;527(3):618-623 [PMID: 32416961]
  10. Immunol Rev. 2018 Jan;281(1):99-114 [PMID: 29247998]
  11. JCI Insight. 2021 Apr 8;6(7): [PMID: 33651717]
  12. Annu Rev Virol. 2015 Nov;2(1):265-88 [PMID: 26958916]
  13. Cell Death Dis. 2012 Jan 26;3:e261 [PMID: 22278288]
  14. Cell Mol Immunol. 2021 May;18(5):1305-1307 [PMID: 33742186]
  15. Aging Dis. 2020 Jul 23;11(4):756-762 [PMID: 32765942]
  16. J Allergy Clin Immunol. 2020 Jul;146(1):215-217 [PMID: 32417135]
  17. Cells. 2019 Apr 08;8(4): [PMID: 30965677]
  18. J Virol. 2021 Feb 26;95(10): [PMID: 33637603]
  19. Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4251-E4260 [PMID: 28484023]
  20. Leukemia. 2020 Jul;34(7):1726-1729 [PMID: 32483300]
  21. Front Microbiol. 2019 Jan 29;10:50 [PMID: 30761102]
  22. Nat Rev Microbiol. 2021 Mar;19(3):155-170 [PMID: 33116300]
  23. Annu Rev Cell Dev Biol. 2012;28:137-61 [PMID: 22974247]
  24. Emerg Microbes Infect. 2020 Dec;9(1):558-570 [PMID: 32172672]
  25. J Exp Med. 2021 Mar 1;218(3): [PMID: 33231615]
  26. Nat Rev Microbiol. 2012 Jul 02;10(8):563-74 [PMID: 22751485]
  27. Immunity. 2009 Apr 17;30(4):556-65 [PMID: 19362020]
  28. iScience. 2020 Jul 24;23(7):101270 [PMID: 32592999]
  29. J Immunol. 2008 Jul 1;181(1):17-21 [PMID: 18566365]
  30. iScience. 2021 Apr 23;24(4):102295 [PMID: 33718825]
  31. J Immunol. 2020 Jun 15;204(12):3063-3069 [PMID: 32513874]
  32. Blood. 2020 Oct 29;136(18):2080-2089 [PMID: 32877502]
  33. Virology. 2022 Mar;568:13-22 [PMID: 35066302]
  34. J Immunol. 2017 Jun 1;198(11):4383-4393 [PMID: 28424239]
  35. Immunity. 2019 Oct 15;51(4):609-624 [PMID: 31473100]
  36. Microorganisms. 2021 Feb 26;9(3): [PMID: 33652815]
  37. Clin Immunol. 2020 Jun;215:108427 [PMID: 32325252]
  38. J Exp Med. 2009 Jan 16;206(1):79-87 [PMID: 19139171]
  39. Immunity. 2012 Mar 23;36(3):401-14 [PMID: 22342844]
  40. J Cell Biol. 2004 May 10;165(3):347-56 [PMID: 15123740]
  41. Blood. 2013 Nov 14;122(20):3473-81 [PMID: 23878142]
  42. Am J Pathol. 2020 Jun;190(6):1138-1150 [PMID: 32194049]
  43. J Cell Sci. 2013 Jul 1;126(Pt 13):2903-13 [PMID: 23613465]
  44. Nature. 2011 Oct 16;479(7371):117-21 [PMID: 22002608]
  45. Nature. 2021 Feb;590(7847):635-641 [PMID: 33429418]
  46. Biochem Pharmacol. 2021 Jun;188:114543 [PMID: 33812856]
  47. PLoS One. 2015 May 15;10(5):e0126456 [PMID: 25978411]
  48. Eur J Immunol. 2021 Jul;51(7):1652-1659 [PMID: 33738806]
  49. FASEB J. 2019 Aug;33(8):8865-8877 [PMID: 31034780]
  50. Science. 2021 Jan 29;371(6528): [PMID: 33243852]
  51. J Virol. 2021 Aug 10;95(17):e0040221 [PMID: 34133899]
  52. Cell Death Discov. 2021 Mar 1;7(1):43 [PMID: 33649297]
  53. Am J Physiol Cell Physiol. 2020 Aug 1;319(2):C258-C267 [PMID: 32510973]
  54. Cell Rep. 2021 Mar 30;34(13):108916 [PMID: 33765414]

Grants

  1. Decision 322638/Academy of Finland

MeSH Term

Adaptive Immunity
COVID-19
COVID-19 Vaccines
Cell Death
Cytokine Release Syndrome
Cytokines
Humans
Immunity, Innate
Inflammasomes
Inflammation
Interleukin-18
Interleukin-1beta
Neoplasm Proteins
Pyroptosis
SARS-CoV-2
mRNA Vaccines

Chemicals

COVID-19 Vaccines
Cytokines
GSDMA protein, human
IL1B protein, human
Inflammasomes
Interleukin-18
Interleukin-1beta
Neoplasm Proteins
mRNA Vaccines

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2COVID-19calledseverecytokinesinnateimmuneresponsecauseddiseasepro-inflammatoryInflammasomesproteinvirusinfectioninflammasomesinflammasomeactivationnewtypecoronavirusworldwidepandemicinducedmajoritypeoplerelativelymildrespiratorysymptomsHoweversmallpercentagepatientsdevelopmultipleorgansaffectedformsinfectionsassociatedexcessiveproduction"cytokinestorm"complexessystemorchestratedevelopmentlocalsystemicinflammationRecentdatasuggestinvolvementActivationexertstwomajoreffects:activatescaspase-1-mediatedprocessingsecretionIL-1βIL-18inducesinflammatorycelldeathpyroptosisviagasderminDprovidecomprehensivereviewcurrentunderstandingpossiblefunctionsdifferentstructurescompareinfluenzaalsodiscussnovelmRNAvaccinesactivateprerequisiteprotectiveadaptiveInfectionimmunity

Similar Articles

Cited By