Modelling interference between vectors of non-persistently transmitted plant viruses to identify effective control strategies.

Marta Zaffaroni, Loup Rimbaud, Ludovic Mailleret, Nik J Cunniffe, Daniele Bevacqua
Author Information
  1. Marta Zaffaroni: INRAE, UR1115 Plantes et Systèmes de culture Horticoles (PSH), Site Agroparc, Avignon, France. ORCID
  2. Loup Rimbaud: INRAE, UR0407 Pathologie Végétale, Domaine St Maurice, Montfavet, France. ORCID
  3. Ludovic Mailleret: Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France. ORCID
  4. Nik J Cunniffe: Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom. ORCID
  5. Daniele Bevacqua: INRAE, UR1115 Plantes et Systèmes de culture Horticoles (PSH), Site Agroparc, Avignon, France. ORCID

Abstract

Aphids are the primary vector of plant viruses. Transient aphids, which probe several plants per day, are considered to be the principal vectors of non-persistently transmitted (NPT) viruses. However, resident aphids, which can complete their life cycle on a single host and are affected by agronomic practices, can transmit NPT viruses as well. Moreover, they can interfere both directly and indirectly with transient aphids, eventually shaping plant disease dynamics. By means of an epidemiological model, originally accounting for ecological principles and agronomic practices, we explore the consequences of fertilization and irrigation, pesticide deployment and roguing of infected plants on the spread of viral diseases in crops. Our results indicate that the spread of NPT viruses can be i) both reduced or increased by fertilization and irrigation, depending on whether the interference is direct or indirect; ii) counter-intuitively increased by pesticide application and iii) reduced by roguing infected plants. We show that a better understanding of vectors' interactions would enhance our understanding of disease transmission, supporting the development of disease management strategies.

References

  1. Ecology. 2019 Sep;100(9):e02782 [PMID: 31170312]
  2. Phytopathology. 2012 Apr;102(4):365-80 [PMID: 22106830]
  3. Oecologia. 2006 Sep;149(3):444-55 [PMID: 16794833]
  4. Virus Res. 2000 Nov;71(1-2):33-47 [PMID: 11137160]
  5. Phytopathology. 2019 Jul;109(7):1184-1197 [PMID: 30844325]
  6. J Gen Virol. 2005 Feb;86(Pt 2):469-472 [PMID: 15659767]
  7. Ecology. 2019 Jul;100(7):e02725 [PMID: 30980528]
  8. Chemosphere. 2019 Jul;226:651-658 [PMID: 30965243]
  9. J Econ Entomol. 2016 Apr;109(2):487-501 [PMID: 26637536]
  10. Epidemics. 2015 Mar;10:6-10 [PMID: 25843374]
  11. Annu Rev Phytopathol. 2006;44:183-212 [PMID: 16602948]
  12. Biol Lett. 2012 Aug 23;8(4):685-8 [PMID: 22491764]
  13. Virus Res. 2009 May;141(2):158-68 [PMID: 19152819]
  14. Proc Biol Sci. 2019 Sep 25;286(1911):20191383 [PMID: 31551062]
  15. Plants (Basel). 2020 Dec 14;9(12): [PMID: 33327457]
  16. Ecology. 2010 Apr;91(4):1075-82 [PMID: 20462121]
  17. New Phytol. 2016 Dec;212(4):856-870 [PMID: 27874990]
  18. Microbiol Mol Biol Rev. 1999 Mar;63(1):128-48 [PMID: 10066833]
  19. Annu Rev Entomol. 1999;44:457-81 [PMID: 15012379]
  20. Ecology. 2017 Aug;98(8):2145-2157 [PMID: 28555726]
  21. Phytopathology. 2000 Jun;90(6):576-94 [PMID: 18944537]
  22. J Math Biol. 1990;28(4):365-82 [PMID: 2117040]
  23. Nat Plants. 2016 Jan 06;2:15206 [PMID: 27250753]
  24. New Phytol. 2012 Mar;193(4):1064-1075 [PMID: 22260272]
  25. Ecol Lett. 2019 May;22(5):875-883 [PMID: 30848045]
  26. Ecol Lett. 2007 Oct;10(10):977-94 [PMID: 17855811]
  27. Mol Plant Pathol. 2004 Sep 1;5(5):505-11 [PMID: 20565624]
  28. New Phytol. 2008;178(3):625-33 [PMID: 18312538]
  29. J R Soc Interface. 2010 Jun 6;7(47):873-85 [PMID: 19892718]
  30. J Theor Biol. 2009 Jan 21;256(2):201-14 [PMID: 18983855]
  31. Phytopathology. 2013 Feb;103(2):117-28 [PMID: 23075167]
  32. Math Biosci. 2007 Mar;206(1):3-10 [PMID: 16529777]
  33. PLoS Comput Biol. 2014 Aug 07;10(8):e1003753 [PMID: 25102099]
  34. C R Biol. 2010 Jun-Jul;333(6-7):524-38 [PMID: 20541164]
  35. J R Soc Interface. 2010 Mar 6;7(44):439-51 [PMID: 19625305]
  36. Phytopathology. 2015 Nov;105(11):1408-16 [PMID: 26512749]
  37. Plant Dis. 2018 May;102(5):837-854 [PMID: 30673389]
  38. Plant Dis. 2015 Dec;99(12):1803-1807 [PMID: 30699500]
  39. Annu Rev Phytopathol. 2015;53:357-78 [PMID: 26047559]
  40. Annu Rev Phytopathol. 2008;46:385-418 [PMID: 18680429]
  41. Appl Environ Microbiol. 2014 Jan;80(1):420-6 [PMID: 24185853]
  42. Sci Rep. 2017 Jan 13;7:40512 [PMID: 28084404]
  43. J R Soc Interface. 2020 Nov;17(172):20200356 [PMID: 33143590]
  44. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1246-8 [PMID: 16591932]
  45. Plant Dis. 2014 Feb;98(2):213-222 [PMID: 30708764]
  46. Viruses. 2019 Dec 13;11(12): [PMID: 31847125]
  47. PLoS Comput Biol. 2021 Dec 30;17(12):e1009759 [PMID: 34968387]

MeSH Term

Animals
Aphids
Crops, Agricultural
Insect Control
Insect Vectors
Plant Diseases
Plant Viruses

Word Cloud

Created with Highcharts 10.0.0virusescanplantaphidsplantsNPTdiseasevectorsnon-persistentlytransmittedagronomicpracticesfertilizationirrigationpesticideroguinginfectedspreadreducedincreasedinterferenceunderstandingstrategiesAphidsprimaryvectorTransientprobeseveralperdayconsideredprincipalHoweverresidentcompletelifecyclesinglehostaffectedtransmitwellMoreoverinterferedirectlyindirectlytransienteventuallyshapingdynamicsmeansepidemiologicalmodeloriginallyaccountingecologicalprinciplesexploreconsequencesdeploymentviraldiseasescropsresultsindicatedependingwhetherdirectindirectiicounter-intuitivelyapplicationiiishowbettervectors'interactionsenhancetransmissionsupportingdevelopmentmanagementModellingidentifyeffectivecontrol

Similar Articles

Cited By