Machine Learning Models for Activity: Prediction and Target Visualization.

Thomas R Lane, Fabio Urbina, Laura Rank, Jacob Gerlach, Olga Riabova, Alexander Lepioshkin, Elena Kazakova, Anthony Vocat, Valery Tkachenko, Stewart Cole, Vadim Makarov, Sean Ekins
Author Information
  1. Thomas R Lane: Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.
  2. Fabio Urbina: Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.
  3. Laura Rank: Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.
  4. Jacob Gerlach: Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.
  5. Olga Riabova: Research Center of Biotechnology RAS, Moscow 119071, Russia.
  6. Alexander Lepioshkin: Research Center of Biotechnology RAS, Moscow 119071, Russia.
  7. Elena Kazakova: Research Center of Biotechnology RAS, Moscow 119071, Russia.
  8. Anthony Vocat: Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
  9. Valery Tkachenko: Science Data Experts, 14909 Forest Landing Cir, Rockville, Maryland 20850, United States.
  10. Stewart Cole: Institut Pasteur, Paris 75015, France.
  11. Vadim Makarov: Research Center of Biotechnology RAS, Moscow 119071, Russia.
  12. Sean Ekins: Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States. ORCID

Abstract

Tuberculosis (TB) is a major global health challenge, with approximately 1.4 million deaths per year. There is still a need to develop novel treatments for patients infected with (). There have been many large-scale phenotypic screens that have led to the identification of thousands of new compounds. Yet, there is very limited investment in TB drug discovery which points to the need for new methods to increase the efficiency of drug discovery against . We have used machine learning approaches to learn from the public data, resulting in many data sets and models with robust enrichment and hit rates leading to the discovery of new active compounds. Recently, we have curated predominantly small-molecule data and developed new machine learning classification models with 18 886 molecules at different activity cutoffs. We now describe the further validation of these Bayesian models using a library of over 1000 molecules synthesized as part of EU-funded New Medicines for TB and More Medicines for TB programs. We highlight molecular features which are enriched in these active compounds. In addition, we provide new regression and classification models that can be used for scoring compound libraries or used to design new molecules. We have also visualized these molecules in the context of known molecular targets and identified clusters in chemical property space, which may aid in future target identification efforts. Finally, we are also making these data sets publicly available, representing a significant increase to the available inhibition data in the public domain.

Keywords

References

  1. Drug Discov Today. 2011 Apr;16(7-8):298-310 [PMID: 21376136]
  2. Anal Chem. 2011 Mar 15;83(6):2112-8 [PMID: 21332183]
  3. Pharm Res. 2011 Aug;28(8):1785-91 [PMID: 21607776]
  4. Mol Inform. 2018 Jan;37(1-2): [PMID: 29235269]
  5. Pharm Res. 2011 Aug;28(8):1859-69 [PMID: 21547522]
  6. Wiley Interdiscip Rev Comput Mol Sci. 2014 Sep 1;4(5):468-481 [PMID: 25285160]
  7. J Chem Inf Model. 2014 Apr 28;54(4):1070-82 [PMID: 24665947]
  8. Curr Pharm Des. 2014;20(27):4379-403 [PMID: 24245764]
  9. Mol Biosyst. 2010 Nov;6(11):2316-2324 [PMID: 20835433]
  10. Sci Rep. 2018 Feb 16;8(1):3187 [PMID: 29453370]
  11. Antimicrob Agents Chemother. 2002 Aug;46(8):2720-2 [PMID: 12121966]
  12. Chem Biol. 2015 Jul 23;22(7):917-27 [PMID: 26097035]
  13. mBio. 2018 Dec 18;9(6): [PMID: 30563908]
  14. J Chem Inf Model. 2013 Nov 25;53(11):3054-63 [PMID: 24144044]
  15. N Engl J Med. 2016 Sep 15;375(11):1081-9 [PMID: 27626523]
  16. J Biol Chem. 2015 Dec 25;290(52):31077-89 [PMID: 26546681]
  17. J Chem Inf Model. 2017 Jan 23;57(1):36-49 [PMID: 28006899]
  18. Science. 2009 May 8;324(5928):801-4 [PMID: 19299584]
  19. Curr Opin Microbiol. 2014 Oct;21:7-12 [PMID: 25078318]
  20. Int J Clin Exp Med. 2013 Apr 12;6(4):307-9 [PMID: 23641309]
  21. Nat Rev Cancer. 2007 Jan;7(1):54-60 [PMID: 17186018]
  22. J Cheminform. 2019 Dec 3;11(1):74 [PMID: 33430938]
  23. Tuberculosis (Edinb). 2009 Sep;89(5):354-63 [PMID: 19783214]
  24. Pharm Res. 2014 Feb;31(2):414-35 [PMID: 24132686]
  25. Mol Microbiol. 2007 Jun;64(6):1442-54 [PMID: 17555433]
  26. Curr Opin Investig Drugs. 2004 Feb;5(2):146-53 [PMID: 15043388]
  27. Drug Discov Today. 2017 Mar;22(3):487-491 [PMID: 27664546]
  28. N Engl J Med. 2020 Mar 5;382(10):893-902 [PMID: 32130813]
  29. J Am Chem Soc. 2010 Oct 6;132(39):13663-5 [PMID: 20828197]
  30. Mol Pharm. 2019 Apr 1;16(4):1620-1632 [PMID: 30779585]
  31. Antimicrob Agents Chemother. 1996 Dec;40(12):2813-9 [PMID: 9124847]
  32. ACS Chem Biol. 2018 Nov 16;13(11):3184-3192 [PMID: 30289689]
  33. ACS Omega. 2020 Nov 15;5(46):29935-29942 [PMID: 33251429]
  34. Antimicrob Agents Chemother. 2017 Aug 24;61(9): [PMID: 28696239]
  35. Tuberculosis (Edinb). 2014 Mar;94(2):162-9 [PMID: 24440548]
  36. FEMS Immunol Med Microbiol. 2008 Jul;53(2):145-50 [PMID: 18479439]
  37. J Chem Inf Model. 2014 Jul 28;54(7):2157-65 [PMID: 24968215]
  38. J Cheminform. 2013 Mar 06;5(1):13 [PMID: 23497706]
  39. J Biol Chem. 2017 Aug 11;292(32):13097-13110 [PMID: 28620052]
  40. J Cheminform. 2014 Aug 04;6:38 [PMID: 25302078]
  41. ACS Omega. 2022 May 27;7(22):18699-18713 [PMID: 35694522]
  42. Chem Sci. 2017 Oct 31;9(2):513-530 [PMID: 29629118]
  43. Antimicrob Agents Chemother. 2018 Nov 26;62(12): [PMID: 30297366]
  44. Mol Biosyst. 2010 May;6(5):840-51 [PMID: 20567770]
  45. Antimicrob Agents Chemother. 2012 Jan;56(1):446-57 [PMID: 21986820]
  46. J Biol Chem. 1996 Nov 8;271(45):28682-90 [PMID: 8910503]
  47. Metallomics. 2018 Jul 18;10(7):992-1002 [PMID: 29946601]
  48. J Am Chem Soc. 2012 Jan 18;134(2):912-5 [PMID: 22188377]
  49. Pharm Res. 2012 Aug;29(8):2115-27 [PMID: 22477069]
  50. Mol Cell. 2000 Apr;5(4):717-27 [PMID: 10882107]
  51. Nat Rev Genet. 2015 Jun;16(6):321-32 [PMID: 25948244]
  52. Antimicrob Agents Chemother. 2015 Aug;59(8):4446-52 [PMID: 25987616]
  53. ACS Chem Biol. 2014 Jul 18;9(7):1567-75 [PMID: 24877756]
  54. EMBO Mol Med. 2014 Mar;6(3):372-83 [PMID: 24500695]
  55. Drug Discov Today. 2017 Mar;22(3):477-478 [PMID: 27717851]
  56. Tuberculosis (Edinb). 2012 Jan;92(1):72-83 [PMID: 21708485]
  57. Nat Med. 2006 Sep;12(9):1027-9 [PMID: 16906155]
  58. Mol Pharm. 2009 Sep-Oct;6(5):1591-603 [PMID: 19673539]
  59. Mol Pharm. 2017 Dec 4;14(12):4462-4475 [PMID: 29096442]
  60. J Infect Chemother. 2017 Nov;23(11):794-797 [PMID: 28527650]
  61. J Med Chem. 2020 Sep 10;63(17):8917-8955 [PMID: 32259446]
  62. Antimicrob Agents Chemother. 2014 May;58(5):2944-7 [PMID: 24550336]
  63. J Pharmacol Toxicol Methods. 2014 Mar-Apr;69(2):115-40 [PMID: 24361690]
  64. Mol Pharm. 2016 Jul 5;13(7):2524-30 [PMID: 27200455]
  65. Cold Spring Harb Perspect Med. 2015 Apr 27;5(9):a017863 [PMID: 25918181]
  66. Tuberculosis (Edinb). 2017 Mar;103:52-60 [PMID: 28237034]
  67. Sci Rep. 2016 Jun 10;6:27792 [PMID: 27283217]
  68. J Cheminform. 2011 Jul 28;3:28 [PMID: 21798025]
  69. Emerg Infect Dis. 2020 Oct;26(10):2506-2508 [PMID: 32672531]
  70. PLoS One. 2013 May 07;8(5):e63240 [PMID: 23667592]
  71. Antimicrob Agents Chemother. 2014;58(1):55-60 [PMID: 24126578]
  72. BMC Public Health. 2009 Sep 18;9:348 [PMID: 19765291]
  73. Lancet Infect Dis. 2014 Apr;14(4):327-40 [PMID: 24670627]
  74. Drug Discov Today. 2017 Mar;22(3):534-545 [PMID: 27717850]
  75. Nat Chem Biol. 2017 Jan;13(1):54-61 [PMID: 27820797]
  76. Nat Commun. 2016 Sep 01;7:12581 [PMID: 27581223]
  77. Chem Biol. 2013 Mar 21;20(3):370-8 [PMID: 23521795]
  78. Trends Biotechnol. 2010 Dec;28(12):596-604 [PMID: 20970210]
  79. AIDS. 1999 Oct 1;13(14):1899-904 [PMID: 10513648]
  80. J Chem Inf Model. 2008 Dec;48(12):2362-70 [PMID: 19053518]
  81. J Chem Inf Model. 2016 Jul 25;56(7):1332-43 [PMID: 27335215]
  82. N Engl J Med. 2020 Mar 5;382(10):959-960 [PMID: 32130819]
  83. ACS Chem Biol. 2015 Mar 20;10(3):705-14 [PMID: 25427196]
  84. J Antimicrob Chemother. 2006 Jun;57(6):1134-8 [PMID: 16595643]
  85. Mol Microbiol. 2000 May;36(3):630-7 [PMID: 10844652]
  86. Nat Chem Biol. 2013 Aug;9(8):499-506 [PMID: 23770708]
  87. J Bacteriol. 2000 Jul;182(14):4059-67 [PMID: 10869086]
  88. Am J Respir Crit Care Med. 2014 Dec 15;190(12):1455-7 [PMID: 25496107]
  89. J Cheminform. 2013 Sep 24;5(1):43 [PMID: 24063533]
  90. Annu Rev Pharmacol Toxicol. 2005;45:529-64 [PMID: 15822188]
  91. Ann Clin Microbiol Antimicrob. 2017 Nov 2;16(1):69 [PMID: 29096645]
  92. J Biomed Inform. 2016 Jun;61:119-31 [PMID: 26992568]
  93. Tuberculosis (Edinb). 2009 Sep;89(5):334-53 [PMID: 19758845]
  94. Bioorg Med Chem Lett. 2013 Sep 1;23(17):4741-50 [PMID: 23910985]
  95. ACS Omega. 2021 Oct 05;6(41):27233-27238 [PMID: 34693143]
  96. Nat Rev Microbiol. 2014 Mar;12(3):159-67 [PMID: 24487820]
  97. Drug Discov Today. 2017 Mar;22(3):479-480 [PMID: 28325272]
  98. Clin Microbiol Infect. 2021 Feb;27(2):293-294 [PMID: 32822881]
  99. Antimicrob Agents Chemother. 2005 Jun;49(6):2153-63 [PMID: 15917508]
  100. Mol Pharm. 2018 Oct 1;15(10):4346-4360 [PMID: 29672063]
  101. Tuber Lung Dis. 1993 Feb;74(1):32-7 [PMID: 8495018]
  102. PLoS One. 2009 Dec 16;4(12):e8174 [PMID: 20016836]
  103. Science. 2006 Sep 29;313(5795):1929-35 [PMID: 17008526]
  104. Antimicrob Agents Chemother. 2018 Sep 24;62(10): [PMID: 30012754]

Grants

  1. R43 AT010585/NCCIH NIH HHS
  2. R43 ES031038/NIEHS NIH HHS
  3. R44 GM122196/NIGMS NIH HHS

MeSH Term

Antitubercular Agents
Bayes Theorem
Humans
Machine Learning
Mycobacterium tuberculosis
Tuberculosis

Chemicals

Antitubercular Agents

Word Cloud

Created with Highcharts 10.0.0newdataTBdiscoverymachinelearningmodelsmoleculescompoundsdrugusedmolecularneedmanyidentificationincreasepublicsetsactiveclassificationMedicinesfeaturesalsoavailableTuberculosismajorglobalhealthchallengeapproximately14milliondeathsperyearstilldevelopnoveltreatmentspatientsinfectedlarge-scalephenotypicscreensledthousandsYetlimitedinvestmentpointsmethodsefficiencyapproacheslearnresultingrobustenrichmenthitratesleadingRecentlycuratedpredominantlysmall-moleculedeveloped18 886differentactivitycutoffsnowdescribevalidationBayesianusinglibrary1000synthesizedpartEU-fundedNewprogramshighlightenrichedadditionprovideregressioncanscoringcompoundlibrariesdesignvisualizedcontextknowntargetsidentifiedclusterschemicalpropertyspacemayaidfuturetargeteffortsFinallymakingpubliclyrepresentingsignificantinhibitiondomainMachineLearningModelsActivity:PredictionTargetVisualizationassaycentraldeepsupportvectortuberculosis

Similar Articles

Cited By