Sensitivity Analysis in an Immuno-Epidemiological Vector-Host Model.

Hayriye Gulbudak, Zhuolin Qu, Fabio Milner, Necibe Tuncer
Author Information
  1. Hayriye Gulbudak: Department of Mathematics, University of Louisiana at Lafayette, 217 Maxim Doucet Hall, Lafayette, LA, P.O. Box 43568, USA. hayriye.gulbudak@louisiana.edu. ORCID
  2. Zhuolin Qu: Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
  3. Fabio Milner: School of Mathematical and Statistical Sciences, Arizona State University, 825 Wexler Hall, P.O. Box 871804, Tempe, AZ, 85287, USA.
  4. Necibe Tuncer: Department of Mathematical Sciences, Florida Atlantic University, Science Building, Room 234 777 Glades Road, Boca Raton, FL, 33431, USA.

Abstract

Sensitivity Analysis (SA) is a useful tool to measure the impact of changes in model parameters on the infection dynamics, particularly to quantify the expected efficacy of disease control strategies. SA has only been applied to epidemic models at the population level, ignoring the effect of within-host virus-with-immune-system interactions on the disease spread. Connecting the scales from individual to population can help inform drug and vaccine development. Thus the value of understanding the impact of immunological parameters on epidemiological quantities. Here we consider an age-since-infection structured vector-host model, in which epidemiological parameters are formulated as functions of within-host virus and antibody densities, governed by an ODE system. We then use SA for these immuno-epidemiological models to investigate the impact of immunological parameters on population-level disease dynamics such as basic reproduction number, final size of the epidemic or the infectiousness at different phases of an outbreak. As a case study, we consider Rift Valley Fever Disease utilizing parameter estimations from prior studies. SA indicates that [Formula: see text] increase in within-host pathogen growth rate can lead up to [Formula: see text] increase in [Formula: see text] up to [Formula: see text] increase in steady-state infected host abundance, and up to [Formula: see text] increase in infectiousness of hosts when the reproduction number [Formula: see text] is larger than one. These significant increases in population-scale disease quantities suggest that control strategies that reduce the within-host pathogen growth can be important in reducing disease prevalence.

Keywords

References

  1. Science. 2014 Mar 21;343(6177):1243727 [PMID: 24653038]
  2. J Theor Biol. 2022 Jan 7;532:110919 [PMID: 34592263]
  3. R Soc Open Sci. 2021 Aug 4;8(8):210227 [PMID: 34386248]
  4. Vet Res. 2013 Jul 22;44:58 [PMID: 23876054]
  5. J Math Biol. 2015 Feb;70(3):399-435 [PMID: 24590573]
  6. Am J Trop Med Hyg. 2010 Aug;83(2 Suppl):58-64 [PMID: 20682907]
  7. Annu Rev Immunol. 2002;20:165-96 [PMID: 11861601]
  8. Parasitology. 1982 Oct;85 (Pt 2):411-26 [PMID: 6755367]
  9. J Theor Biol. 2015 Nov 7;384:33-49 [PMID: 26297316]
  10. J Theor Biol. 2002 Oct 7;218(3):289-308 [PMID: 12381431]
  11. J Math Biol. 2020 May;80(6):1803-1843 [PMID: 32157381]
  12. Bull Math Biol. 2017 Feb;79(2):325-355 [PMID: 28032207]
  13. Res Virol. 1989 Mar-Apr;140(2):139-46 [PMID: 2756241]
  14. Acta Biotheor. 2011 Dec;59(3-4):231-50 [PMID: 21611886]
  15. Philos Trans R Soc Lond B Biol Sci. 2015 Aug 19;370(1675): [PMID: 26150668]
  16. Vet Res. 2010 Nov-Dec;41(6):61 [PMID: 21188836]
  17. Bull Math Biol. 2016 Sep;78(9):1796-1827 [PMID: 27651156]
  18. MMWR Morb Mortal Wkly Rep. 2007 Feb 2;56(4):73-6 [PMID: 17268404]
  19. PLoS Negl Trop Dis. 2015 Jan 08;9(1):e3388 [PMID: 25569474]

MeSH Term

Animals
Basic Reproduction Number
Disease Vectors
Mathematical Concepts
Models, Biological
Rift Valley Fever

Word Cloud

Created with Highcharts 10.0.0[Formula:seetext]diseaseSAmodelparameterswithin-hostincreaseSensitivityimpactcanreproductionnumberAnalysisdynamicscontrolstrategiesepidemicmodelspopulationimmunologicalepidemiologicalquantitiesconsiderinfectiousnessRiftpathogengrowthusefultoolmeasurechangesinfectionparticularlyquantifyexpectedefficacyappliedlevelignoringeffectvirus-with-immune-systeminteractionsspreadConnectingscalesindividualhelpinformdrugvaccinedevelopmentThusvalueunderstandingage-since-infectionstructuredvector-hostformulatedfunctionsvirusantibodydensitiesgovernedODEsystemuseimmuno-epidemiologicalinvestigatepopulation-levelbasicfinalsizedifferentphasesoutbreakcasestudyValleyFeverDiseaseutilizingparameterestimationspriorstudiesindicatesrateleadsteady-stateinfectedhostabundancehostslargeronesignificantincreasespopulation-scalesuggestreduceimportantreducingprevalenceImmuno-EpidemiologicalVector-HostModelBasicImmuno-epidemiologicalMulti-scalevalleyfeveranalysis

Similar Articles

Cited By