Interpretable Design of Reservoir Computing Networks Using Realization Theory.

Wei Miao, Vignesh Narayanan, Jr-Shin Li
Author Information

Abstract

The reservoir computing networks (RCNs) have been successfully employed as a tool in learning and complex decision-making tasks. Despite their efficiency and low training cost, practical applications of RCNs rely heavily on empirical design. In this article, we develop an algorithm to design RCNs using the realization theory of linear dynamical systems. In particular, we introduce the notion of α -stable realization and provide an efficient approach to prune the size of a linear RCN without deteriorating the training accuracy. Furthermore, we derive a necessary and sufficient condition on the irreducibility of the number of hidden nodes in linear RCNs based on the concepts of controllability and observability from systems theory. Leveraging the linear RCN design, we provide a tractable procedure to realize RCNs with nonlinear activation functions. We present numerical experiments on forecasting time-delay systems and chaotic systems to validate the proposed RCN design methods and demonstrate their efficacy.

References

  1. Phys Rev E. 2017 Sep;96(3-1):032308 [PMID: 29346995]
  2. Chaos. 2021 Jan;31(1):013108 [PMID: 33754755]
  3. Theory Biosci. 2012 Sep;131(3):205-13 [PMID: 22147532]
  4. Sci Rep. 2019 Sep 25;9(1):13887 [PMID: 31554855]
  5. Neural Netw. 2012 Nov;35:1-9 [PMID: 22885243]
  6. IEEE Trans Neural Netw Learn Syst. 2012 Jan;23(1):175-82 [PMID: 24808467]
  7. Neural Netw. 2007 Apr;20(3):391-403 [PMID: 17517492]
  8. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  9. Neural Comput. 2016 Jul;28(7):1411-51 [PMID: 27172266]
  10. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  11. Neural Netw. 2014 Jul;55:59-71 [PMID: 24732236]
  12. Neural Netw. 2011 Jun;24(5):440-56 [PMID: 21376531]
  13. IEEE Trans Neural Netw. 2006 May;17(3):820-4 [PMID: 16722187]
  14. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  15. Neural Netw. 2019 Apr;112:15-23 [PMID: 30735913]
  16. IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4598-4609 [PMID: 33651697]
  17. Phys Rev E. 2018 Jul;98(1-1):012215 [PMID: 30110744]
  18. Sci Rep. 2017 Aug 31;7(1):10199 [PMID: 28860513]
  19. Neural Netw. 2008 Aug;21(6):862-71 [PMID: 18662855]
  20. IEEE Trans Neural Netw. 2011 Jan;22(1):131-44 [PMID: 21075721]
  21. Neural Netw. 2007 Apr;20(3):335-52 [PMID: 17517495]

Grants

  1. R01 GM131403/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0RCNsdesignlinearsystemsRCNtrainingrealizationtheoryprovidereservoircomputingnetworkssuccessfullyemployedtoollearningcomplexdecision-makingtasksDespiteefficiencylowcostpracticalapplicationsrelyheavilyempiricalarticledevelopalgorithmusingdynamicalparticularintroducenotionα-stableefficientapproachprunesizewithoutdeterioratingaccuracyFurthermorederivenecessarysufficientconditionirreducibilitynumberhiddennodesbasedconceptscontrollabilityobservabilityLeveragingtractableprocedurerealizenonlinearactivationfunctionspresentnumericalexperimentsforecastingtime-delaychaoticvalidateproposedmethodsdemonstrateefficacyInterpretableDesignReservoirComputingNetworksUsingRealizationTheory

Similar Articles

Cited By