Biosynthesis of C-nucleoside antibiotics in actinobacteria: recent advances and future developments.

Meng Zhang, Liyuan Kong, Rong Gong, Marianna Iorio, Stefano Donadio, Zixin Deng, Margherita Sosio, Wenqing Chen
Author Information
  1. Meng Zhang: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
  2. Liyuan Kong: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
  3. Rong Gong: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
  4. Marianna Iorio: , Naicons Srl, Viale Ortles 22/4, 20139, Milan, Italy.
  5. Stefano Donadio: , Naicons Srl, Viale Ortles 22/4, 20139, Milan, Italy.
  6. Zixin Deng: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
  7. Margherita Sosio: , Naicons Srl, Viale Ortles 22/4, 20139, Milan, Italy.
  8. Wenqing Chen: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China. wqchen@whu.edu.cn. ORCID

Abstract

Epidemic diseases and antibiotic resistance are urgent threats to global health, and human is confronted with an unprecedented dilemma to conquer them by expediting development of new natural product related drugs. C-nucleoside antibiotics, a remarkable group of microbial natural products with diverse biological activities, feature a heterocycle base linked with a ribosyl moiety via an unusual C-glycosidic bond, and have played significant roles in healthcare and for plant protection. Elucidating how nature biosynthesizes such a group of antibiotics has provided the basis for engineered biosynthesis as well as targeted genome mining of more C-nucleoside antibiotics towards improved properties. In this review, we mainly summarize the recent advances on the biosynthesis of C-nucleoside antibiotics, and we also tentatively discuss the future developments on rationally accessing C-nucleoside diversities in a more efficient and economical way via synthetic biology strategies.

Keywords

References

  1. J Am Chem Soc. 1973 Jul 11;95(14):4761-2 [PMID: 4730666]
  2. Drug Discov Ther. 2018;12(6):318-328 [PMID: 30674766]
  3. Chem Commun (Camb). 2020 Jul 14;56(55):7617-7620 [PMID: 32515440]
  4. J Antibiot (Tokyo). 1966 Nov;19(6):286-7 [PMID: 6013241]
  5. Chem Biol. 2006 Nov;13(11):1125-35 [PMID: 17113994]
  6. J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):335-343 [PMID: 30465105]
  7. iScience. 2019 Dec 20;22:430-440 [PMID: 31816530]
  8. J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):401-17 [PMID: 26153500]
  9. Cancer Res. 1967 Apr;27(4):715-9 [PMID: 4290625]
  10. Nucleic Acids Res. 2019 Nov 4;47(19):10296-10312 [PMID: 31495891]
  11. Tetrahedron Lett. 1970 Jun;(26):2297-300 [PMID: 4915040]
  12. J Antibiot (Tokyo). 2019 Dec;72(12):913-923 [PMID: 31554958]
  13. J Am Chem Soc. 2018 Jul 25;140(29):9083-9086 [PMID: 30001119]
  14. Chem Rev. 2009 Dec;109(12):6729-64 [PMID: 19761208]
  15. Chem Commun (Camb). 2019 Nov 28;55(96):14502-14505 [PMID: 31730149]
  16. Cancer Res. 1978 Mar;38(3):682-8 [PMID: 272228]
  17. Org Lett. 2020 Feb 7;22(3):939-943 [PMID: 31994894]
  18. J Biol Chem. 1970 Sep 10;245(17):4365-71 [PMID: 5498424]
  19. Biochemistry. 1972 Jul 4;11(14):2578-84 [PMID: 5045517]
  20. J Biol Chem. 1979 Sep 25;254(18):8819-24 [PMID: 479162]
  21. Nat Chem Biol. 2017 Apr 10;: [PMID: 28398287]
  22. J Antibiot (Tokyo). 1971 Apr;24(4):253-8 [PMID: 5572753]
  23. Ann N Y Acad Sci. 1975 Aug 8;255:544-51 [PMID: 1059372]
  24. Org Lett. 2020 Dec 4;22(23):9287-9291 [PMID: 33210930]
  25. ACS Chem Biol. 2011 Oct 21;6(10):1000-7 [PMID: 21851099]
  26. Cancer Res. 1980 May;40(5):1482-5 [PMID: 7370986]
  27. J Antibiot (Tokyo). 1971 Nov;24(11):797-9 [PMID: 5140526]
  28. J Antibiot (Tokyo). 1968 Jan;21(1):5-12 [PMID: 5673295]
  29. Clin Infect Dis. 2021 Apr 8;72(7):1256-1258 [PMID: 32594120]
  30. J Am Chem Soc. 2020 Jun 24;142(25):10931-10935 [PMID: 32510939]
  31. Cell Chem Biol. 2019 Apr 18;26(4):493-501.e5 [PMID: 30713097]
  32. Molecules. 2021 Jan 19;26(2): [PMID: 33478059]
  33. Sci Rep. 2021 Mar 12;11(1):5827 [PMID: 33712632]
  34. J Ind Microbiol Biotechnol. 2017 Feb;44(2):285-293 [PMID: 27885438]
  35. Nat Chem Biol. 2021 Feb;17(2):213-221 [PMID: 33257873]
  36. Biochemistry. 1973 Mar 13;12(6):1196-202 [PMID: 4688865]
  37. Tetrahedron Lett. 1967 Oct;42:4105-9 [PMID: 6062169]
  38. J Antibiot (Tokyo). 1964 May;17:96-9 [PMID: 14171222]
  39. Appl Environ Microbiol. 2020 Jan 7;86(2): [PMID: 31676476]
  40. Biotechnol Lett. 2019 Jan;41(1):115-128 [PMID: 30377869]
  41. J Antibiot (Tokyo). 1977 Mar;30(3):272-3 [PMID: 863787]
  42. Cell Chem Biol. 2018 May 17;25(5):540-549.e4 [PMID: 29551347]
  43. J Am Chem Soc. 2019 Apr 17;141(15):6127-6131 [PMID: 30942582]
  44. Cancer. 1977 Dec;40(6):2806-9 [PMID: 589556]
  45. Microbiol Resour Announc. 2020 Apr 2;9(14): [PMID: 32241862]
  46. Cancer Res. 1980 Aug;40(8 Pt 1):2869-75 [PMID: 7388837]
  47. J Antibiot (Tokyo). 1964 Jul;17:148-55 [PMID: 14194952]
  48. J Antibiot (Tokyo). 1984 Apr;37(4):416-8 [PMID: 6725147]
  49. J Antibiot (Tokyo). 1974 Dec;27(12):909-16 [PMID: 4468276]
  50. J Virol. 2014 Jan;88(1):354-63 [PMID: 24155391]
  51. Cancer Res. 1968 Aug;28(8):1605-10 [PMID: 5691758]
  52. Chembiochem. 2020 Mar 2;21(5):644-649 [PMID: 31482654]
  53. Org Lett. 2017 Mar 17;19(6):1426-1429 [PMID: 28233490]
  54. Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13184-13186 [PMID: 28895263]
  55. Tetrahedron Lett. 1966 Feb;6:597-602 [PMID: 5905317]
  56. Sci Rep. 2019 Jun 20;9(1):8935 [PMID: 31222036]
  57. Cell. 2017 Jun 15;169(7):1240-1248.e23 [PMID: 28622509]
  58. J Antibiot (Tokyo). 1972 Jan;25(1):44-7 [PMID: 5010645]
  59. Clin Nurse Spec. 2018 May/Jun;32(3):114-115 [PMID: 29621104]
  60. J Am Chem Soc. 1974 Jun 26;96(13):4327-8 [PMID: 4854435]
  61. Cancer Res. 1973 May;33(5):1109-12 [PMID: 4349934]
  62. Lancet. 2003 Jun 14;361(9374):2045-6 [PMID: 12814717]
  63. Angew Chem Int Ed Engl. 2021 Jul 26;60(31):17148-17154 [PMID: 34048627]
  64. Pure Appl Chem. 1971;28(4):489-97 [PMID: 4947321]
  65. Nat Commun. 2020 Dec 8;11(1):6270 [PMID: 33293530]
  66. ACS Chem Biol. 2017 Jun 16;12(6):1472-1477 [PMID: 28418235]
  67. J Org Chem. 2005 Aug 19;70(17):6721-34 [PMID: 16095292]
  68. J Antibiot (Tokyo). 1972 Mar;25(3):151-4 [PMID: 5034811]
  69. Pest Manag Sci. 2008 Dec;64(12):1294-302 [PMID: 18683907]
  70. Angew Chem Int Ed Engl. 2019 Nov 11;58(46):16512-16516 [PMID: 31518483]
  71. Ann N Y Acad Sci. 1975 Aug 8;255:390-401 [PMID: 1059367]
  72. Biochemistry. 1971 Sep 14;10(19):3608-14 [PMID: 5146574]
  73. J Org Chem. 1977 Jan 7;42(1):109-12 [PMID: 830847]
  74. J Biol Chem. 1973 Aug 10;248(15):5385-8 [PMID: 4768905]

Grants

  1. 31770041/National Natural Science Foundation of China
  2. 31970052/National Natural Science Foundation of China
  3. 32170026/National Natural Science Foundation of China

MeSH Term

Actinobacteria
Anti-Bacterial Agents
Biological Products
Nucleosides
Streptomyces
Synthetic Biology

Chemicals

Anti-Bacterial Agents
Biological Products
Nucleosides

Word Cloud

Created with Highcharts 10.0.0C-nucleosideantibioticsnaturalproductgroupviabiosynthesisminingrecentadvancesfuturedevelopmentsbiologyBiosynthesisEpidemicdiseasesantibioticresistanceurgentthreatsglobalhealthhumanconfrontedunprecedenteddilemmaconquerexpeditingdevelopmentnewrelateddrugsremarkablemicrobialproductsdiversebiologicalactivitiesfeatureheterocyclebaselinkedribosylmoietyunusualC-glycosidicbondplayedsignificantroleshealthcareplantprotectionElucidatingnaturebiosynthesizesprovidedbasisengineeredwelltargetedgenometowardsimprovedpropertiesreviewmainlysummarizealsotentativelydiscussrationallyaccessingdiversitiesefficienteconomicalwaysyntheticstrategiesactinobacteria:GenomeNaturalSynthetic

Similar Articles

Cited By (11)