Enterovirus 71 Activates GADD34 via Precursor 3CD to Promote IRES-Mediated Viral Translation.

Hui Li, Wenqian Li, Shuangling Zhang, Manman Qiu, Zhuoran Li, Yongquan Lin, Juan Tan, Wentao Qiao
Author Information
  1. Hui Li: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.
  2. Wenqian Li: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.
  3. Shuangling Zhang: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.
  4. Manman Qiu: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.
  5. Zhuoran Li: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.
  6. Yongquan Lin: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.
  7. Juan Tan: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.
  8. Wentao Qiao: Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China. ORCID

Abstract

Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5'-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.

Keywords

References

  1. Virol J. 2009 Dec 29;6:231 [PMID: 20040105]
  2. Acta Biochim Biophys Sin (Shanghai). 2011 Jan;43(1):38-44 [PMID: 21173057]
  3. J Biomed Sci. 2009 Nov 20;16:103 [PMID: 19925687]
  4. Oncogene. 2014 May 1;33(18):2317-28 [PMID: 23708656]
  5. Int J Mol Sci. 2018 Dec 28;20(1): [PMID: 30597859]
  6. J Virol. 2000 Mar;74(5):2219-26 [PMID: 10666252]
  7. J Biol Chem. 1994 Oct 28;269(43):27004-14 [PMID: 7929441]
  8. J Virol. 2000 Nov;74(22):10359-70 [PMID: 11044080]
  9. EMBO J. 2017 Mar 15;36(6):761-782 [PMID: 28100675]
  10. PLoS Pathog. 2016 Oct 25;12(10):e1005959 [PMID: 27780225]
  11. Cell Microbiol. 2006 Apr;8(4):565-80 [PMID: 16548883]
  12. PLoS Pathog. 2018 May 21;14(5):e1007086 [PMID: 29782554]
  13. J Virol. 2009 Dec;83(23):12462-72 [PMID: 19776135]
  14. Curr Opin Biotechnol. 2008 Aug;19(4):344-50 [PMID: 18602004]
  15. J Virol. 1997 Dec;71(12):9442-9 [PMID: 9371605]
  16. Trends Microbiol. 2017 Jul;25(7):546-561 [PMID: 28242053]
  17. PLoS One. 2013 Jul 05;8(7):e65948 [PMID: 23861741]
  18. J Virol. 2007 Sep;81(17):9259-67 [PMID: 17567696]
  19. Nucleic Acids Res. 2010 Jan;38(2):618-32 [PMID: 19889724]
  20. EMBO J. 1993 Sep;12(9):3587-98 [PMID: 8253083]
  21. J Biol Chem. 2009 Sep 4;284(36):24061-73 [PMID: 19570978]
  22. PLoS One. 2014 Jan 02;9(1):e83766 [PMID: 24392094]
  23. J Virol. 2005 Jun;79(11):7207-16 [PMID: 15890959]
  24. Int J Biochem Cell Biol. 2015 May;62:36-46 [PMID: 25724735]
  25. J Gen Virol. 2008 Oct;89(Pt 10):2540-2549 [PMID: 18796723]
  26. Virulence. 2021 Dec;12(1):704-722 [PMID: 33517839]
  27. Mol Cell Biol. 2001 Oct;21(20):6841-50 [PMID: 11564868]
  28. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3466-75 [PMID: 26100893]
  29. J Virol. 2016 Nov 28;90(24):11032-11042 [PMID: 27681132]
  30. J Virol. 2005 Mar;79(6):3254-66 [PMID: 15731220]
  31. Mol Cell Biol. 2004 Feb;24(4):1779-90 [PMID: 14749392]
  32. J Biol Chem. 2015 Nov 20;290(47):28257-28271 [PMID: 26446796]
  33. Proteomics. 2015 Nov;15(22):3784-96 [PMID: 26350028]
  34. J Biomed Sci. 2004 Mar-Apr;11(2):239-48 [PMID: 14966374]
  35. iScience. 2019 Sep 27;19:1279-1290 [PMID: 31402258]
  36. Mol Cell Biol. 2003 Feb;23(4):1292-303 [PMID: 12556489]
  37. J Virol. 1987 Sep;61(9):2711-8 [PMID: 3039165]
  38. J Biol Chem. 2009 Mar 13;284(11):6661-73 [PMID: 19131336]
  39. Virology. 2002 Mar 30;295(1):147-59 [PMID: 12033773]
  40. J Gen Virol. 1999 Jun;80 ( Pt 6):1371-1376 [PMID: 10374953]
  41. Front Microbiol. 2018 Jun 19;9:1324 [PMID: 29971060]
  42. Cell Rep. 2015 Jun 30;11(12):1885-91 [PMID: 26095357]
  43. Future Microbiol. 2010 Jun;5(6):867-81 [PMID: 20521933]
  44. J Biol Chem. 2018 Jan 5;293(1):163-176 [PMID: 29109149]
  45. Viruses. 2019 Dec 30;12(1): [PMID: 31906004]
  46. Viruses. 2015 Nov 23;7(11):5962-86 [PMID: 26610545]
  47. J Biol Chem. 1999 Apr 30;274(18):12867-76 [PMID: 10212275]
  48. PLoS Pathog. 2012;8(5):e1002708 [PMID: 22615568]
  49. Virology. 2014 Sep;464-465:353-364 [PMID: 25113906]
  50. Biochim Biophys Acta. 2011 Mar;1809(3):211-9 [PMID: 21220056]
  51. Genes Dev. 1998 Jan 1;12(1):67-83 [PMID: 9420332]
  52. Int J Mol Sci. 2019 Mar 15;20(6): [PMID: 30875926]
  53. J Virol. 2007 Oct;81(20):11106-15 [PMID: 17670836]
  54. BMC Genomics. 2017 Jan 25;18(Suppl 1):933 [PMID: 28198671]
  55. Virology. 2020 Jan 15;540:119-131 [PMID: 31778897]
  56. Nature. 1988 Jul 28;334(6180):320-5 [PMID: 2839775]
  57. J Virol. 1990 Nov;64(11):5389-95 [PMID: 2170677]
  58. Protein Cell. 2019 Jan;10(1):72-77 [PMID: 29696588]
  59. Mol Cell Biol. 2008 Dec;28(23):6989-7000 [PMID: 18794359]
  60. J Virol. 2017 Aug 10;91(17): [PMID: 28637757]
  61. J Virol. 2003 Apr;77(7):3939-49 [PMID: 12634354]
  62. Elife. 2015 Jan 26;4:e03971 [PMID: 25621764]
  63. BMC Bioinformatics. 2009 May 27;10:160 [PMID: 19473520]
  64. J Biol Chem. 2011 Jun 17;286(24):21687-96 [PMID: 21518769]
  65. J Biol Chem. 2012 Feb 24;287(9):6406-20 [PMID: 22219187]
  66. Front Microbiol. 2015 Jun 18;6:594 [PMID: 26150805]

MeSH Term

5' Untranslated Regions
Amino Acid Motifs
Cell Line
Enterovirus A, Human
Hand, Foot and Mouth Disease
Host-Pathogen Interactions
Humans
Internal Ribosome Entry Sites
Open Reading Frames
Protein Binding
Protein Biosynthesis
Protein Phosphatase 1
Viral Nonstructural Proteins
Virus Replication

Chemicals

5' Untranslated Regions
Internal Ribosome Entry Sites
Viral Nonstructural Proteins
PPP1R15A protein, human
Protein Phosphatase 1

Word Cloud

Created with Highcharts 10.0.0GADD34EV71protein3CDhostviralexpressionreplicationupregulatednon-structuralprecursorIREStranslationregionsPESTEnterovirus71infectionsstudyinfectiondeterminedribosomeinteractionsincreaseRNAviauORFeIF2α123activityrevealsnewpromotesregulatesimportantproteinsreportmajorpathogenhandfootmouthdiseaseseverecasescancauselife-threateningneurologicalcomplicationsasepticmeningitispolio-likeparalysisspecificantiviraltreatmentspreviousgrowtharrestDNAdamage-inducible34profilingRNA-sequencinginvestigatedRhabdomyosarcomaRDcellsinfectedresultingsignificantmRNAscreeningresponsibleupregulatingincreasedlevelsmutantY441Supstreamopenreadingframe5'untranslatedUTRattenuatedknockdownfunctiondephosphorylateunrelatedupregulationrequiredpromotedinternalentrysiterepeatsaffectedseveralvirusesFinallyaminoacids563565interactedassistingtargetresearchmechanismsupportIdentificationfactorsinvolvedapproachdiscoveringpathogenicmechanismsidentifyingpotentialtherapeutictargetsPreviouslyscreenedinteractionactivates5'-UTRprovidingexplanationregulatekeyfunctionaldomainspromotefirsttimeprocessindependentphosphataseActivatesPrecursorPromoteIRES-MediatedViralTranslationIRES-mediatedenterovirusvirus-host

Similar Articles

Cited By