Robustness of Latent Profile Analysis to Measurement Noninvariance Between Profiles.

Yan Wang, Eunsook Kim, Zhiyao Yi
Author Information
  1. Yan Wang: University of Massachusetts Lowell, Lowell, MA, USA. ORCID
  2. Eunsook Kim: University of South Florida, Tampa, FL, USA. ORCID
  3. Zhiyao Yi: Chongqing Technology and Business University, Chongqing, China.

Abstract

Latent profile analysis (LPA) identifies heterogeneous subgroups based on continuous indicators that represent different dimensions. It is a common practice to measure each dimension using items, create composite or factor scores for each dimension, and use these scores as indicators of profiles in LPA. In this case, measurement models for dimensions are not included and potential noninvariance across latent profiles is not modeled in LPA. This simulation study examined the robustness of LPA in terms of class enumeration and parameter recovery when the noninvariance was unmodeled by using composite or factor scores as profile indicators. Results showed that correct class enumeration rates of LPA were relatively high with small degree of noninvariance, large class separation, large sample size, and equal proportions. Severe bias in profile indicator mean difference was observed with intercept and loading noninvariance, respectively. Implications for applied researchers are discussed.

Keywords

References

  1. Struct Equ Modeling. 2013 Oct 1;20(4): [PMID: 24302849]
  2. Multivariate Behav Res. 2008 Oct;43(4):592-620 [PMID: 20165736]
  3. J Appl Psychol. 2006 Nov;91(6):1292-306 [PMID: 17100485]
  4. J Behav Med. 2020 Dec;43(6):1002-1013 [PMID: 32323118]
  5. Psychol Methods. 2020 Aug;25(4):472-495 [PMID: 32271042]
  6. Educ Psychol Meas. 2021 Feb;81(1):61-89 [PMID: 33456062]
  7. Multivariate Behav Res. 2010 Nov 30;45(6):975-99 [PMID: 26760725]
  8. Front Psychol. 2017 Sep 05;8:1499 [PMID: 28928691]
  9. Psychol Methods. 2005 Mar;10(1):21-39 [PMID: 15810867]
  10. Multivariate Behav Res. 2006 Dec 1;41(4):499-532 [PMID: 26794916]
  11. Twin Res Hum Genet. 2005 Dec;8(6):553-68 [PMID: 16354497]
  12. Behav Genet. 2017 Sep;47(5):516-536 [PMID: 28780665]
  13. Rehabil Psychol. 2019 Aug;64(3):377-382 [PMID: 30985153]
  14. J Anxiety Disord. 2016 Apr;39:1-9 [PMID: 26896605]
  15. J Anxiety Disord. 2014 Oct;28(7):696-703 [PMID: 25128664]
  16. Int J Ment Health Addict. 2020 Apr;18(2):368-381 [PMID: 33746651]
  17. Br J Psychiatry. 2015 Nov;207(5):400-6 [PMID: 26382949]
  18. Cultur Divers Ethnic Minor Psychol. 2019 Jul;25(3):439-450 [PMID: 30382707]
  19. Struct Equ Modeling. 2013 Oct 1;20(4):640-657 [PMID: 24489457]

Word Cloud

Created with Highcharts 10.0.0LPAscoresnoninvarianceprofilefactorindicatorscompositeclassLatentanalysisdimensionsdimensionusingprofilesmeasurementlatentenumerationlargeidentifiesheterogeneoussubgroupsbasedcontinuousrepresentdifferentcommonpracticemeasureitemscreateusecasemodelsincludedpotentialacrossmodeledsimulationstudyexaminedrobustnesstermsparameterrecoveryunmodeledResultsshowedcorrectratesrelativelyhighsmalldegreeseparationsamplesizeequalproportionsSeverebiasindicatormeandifferenceobservedinterceptloadingrespectivelyImplicationsappliedresearchersdiscussedRobustnessProfileAnalysisMeasurementNoninvarianceProfilesmixturemodeling

Similar Articles

Cited By