Amino acid starvation-induced LDLR trafficking accelerates lipoprotein endocytosis and LDL clearance.

Ye Chen, Xiao Wu, Jing Zhang, Guopin Pan, Xiaoyun Wang, Xiaosun Guo, Jianli Wang, Xiaopei Cui, Haiqing Gao, Mei Cheng, Jingwen Yang, Cheng Zhang, Fan Jiang
Author Information
  1. Ye Chen: Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  2. Xiao Wu: Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China. ORCID
  3. Jing Zhang: Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  4. Guopin Pan: Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  5. Xiaoyun Wang: Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  6. Xiaosun Guo: Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  7. Jianli Wang: Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.
  8. Xiaopei Cui: Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  9. Haiqing Gao: Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  10. Mei Cheng: Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  11. Jingwen Yang: Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  12. Cheng Zhang: Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China. ORCID
  13. Fan Jiang: Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. ORCID

Abstract

Mammalian cells utilize Akt-dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low-density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B-containing lipoproteins. However, signaling-controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca and calcium/calmodulin-dependent protein kinase II-mediated signalings. This response is independent of induction of autophagy. Amino acid stress-induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet-induced hypercholesterolemia in heterozygous LDLR-deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling-controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.

Keywords

References

  1. Mol Cell Biol. 1996 Nov;16(11):6486-93 [PMID: 8887677]
  2. Nat Cell Biol. 2002 Feb;4(2):124-33 [PMID: 11788822]
  3. Pharmacol Ther. 2020 Sep;213:107592 [PMID: 32492513]
  4. Biochem Biophys Res Commun. 2012 Oct 12;427(1):185-90 [PMID: 22995293]
  5. Nat Rev Mol Cell Biol. 2009 Sep;10(9):597-608 [PMID: 19696797]
  6. Arterioscler Thromb Vasc Biol. 2009 Apr;29(4):431-8 [PMID: 19299327]
  7. Nat Rev Mol Cell Biol. 2012 May 23;13(6):383-96 [PMID: 22617471]
  8. Mol Biol Cell. 2017 Aug 15;28(17):2267-2281 [PMID: 28615320]
  9. Amino Acids. 2015 Oct;47(10):2065-88 [PMID: 24965527]
  10. Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25 [PMID: 19603039]
  11. Traffic. 2012 Apr;13(4):610-25 [PMID: 22222055]
  12. J Biol Chem. 2004 Apr 16;279(16):16237-45 [PMID: 14739284]
  13. Trends Biochem Sci. 2013 May;38(5):233-42 [PMID: 23465396]
  14. Metabolism. 2016 Jun;65(6):805-15 [PMID: 27173459]
  15. Nat Commun. 2016 Mar 11;7:10961 [PMID: 26965651]
  16. Curr Opin Clin Nutr Metab Care. 2021 Jan;24(1):96-101 [PMID: 33060460]
  17. Aging (Albany NY). 2018 Nov 27;10(12):3638-3640 [PMID: 30482888]
  18. Eur J Biochem. 1994 Feb 1;219(3):1081-5 [PMID: 8112321]
  19. Curr Opin Lipidol. 2017 Jun;28(3):241-247 [PMID: 28301372]
  20. Circ Res. 2006 Oct 27;99(9):943-50 [PMID: 17008602]
  21. Nutr Metab (Lond). 2010 Jun 01;7:47 [PMID: 20515451]
  22. J Biol Chem. 1992 Jan 15;267(2):931-7 [PMID: 1730683]
  23. Am J Clin Nutr. 2019 Nov 1;110(5):1098-1107 [PMID: 31667519]
  24. Infect Immun. 2003 Oct;71(10):5855-70 [PMID: 14500507]
  25. J Nutr Biochem. 2018 Jul;57:189-196 [PMID: 29751292]
  26. Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77 [PMID: 11994746]
  27. Cancer Res. 2020 Dec 15;80(24):5491-5501 [PMID: 33115803]
  28. J Biol Chem. 2012 Mar 16;287(12):9429-40 [PMID: 22262842]
  29. Curr Opin Lipidol. 2001 Jun;12(3):255-60 [PMID: 11353327]
  30. J Biol Chem. 2012 Nov 9;287(46):38625-36 [PMID: 23027865]
  31. Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15207-12 [PMID: 15471987]
  32. J Cell Sci. 2018 Jul 6;131(13): [PMID: 29980602]
  33. EMBO Rep. 2017 Dec;18(12):2119-2130 [PMID: 29030480]
  34. EBioMedicine. 2018 Jan;27:214-224 [PMID: 29289533]
  35. Nat Commun. 2020 Jun 9;11(1):2894 [PMID: 32518324]
  36. Mol Biol Cell. 2004 Sep;15(9):4166-78 [PMID: 15229286]
  37. Cell Metab. 2021 May 4;33(5):905-922.e6 [PMID: 33887198]
  38. Curr Opin Lipidol. 2015 Apr;26(2):82-7 [PMID: 25692346]
  39. EMBO J. 1992 Dec;11(12):4379-89 [PMID: 1425574]
  40. J Biol Chem. 1998 Feb 6;273(6):3166-72 [PMID: 9452427]
  41. Biochim Biophys Acta. 2014 Sep;1843(9):1948-68 [PMID: 24732012]
  42. J Cell Biol. 2012 Aug 20;198(4):749-61 [PMID: 22908316]
  43. Nat Rev Mol Cell Biol. 2004 Feb;5(2):121-32 [PMID: 15040445]
  44. Physiol Rev. 2010 Oct;90(4):1383-435 [PMID: 20959619]
  45. J Biol Chem. 2004 Aug 20;279(34):36013-21 [PMID: 15210689]
  46. EMBO Rep. 2022 Feb 3;23(3):e53373 [PMID: 34994492]
  47. J Biol Chem. 2010 Feb 26;285(9):6101-8 [PMID: 20051515]
  48. JCI Insight. 2018 Nov 2;3(21): [PMID: 30385734]
  49. Diabetes. 2013 Aug;62(8):2635-44 [PMID: 23881190]
  50. Exp Cell Res. 2010 Jul 15;316(12):1946-57 [PMID: 20382142]
  51. J Microsc. 1993 Mar;169(3):375-382 [PMID: 33930978]

MeSH Term

Amino Acids
Animals
Carrier Proteins
Endocytosis
Lipoproteins
Liver
Mice
Receptors, LDL

Chemicals

Amino Acids
Carrier Proteins
Lipoproteins
Receptors, LDL

Word Cloud

Created with Highcharts 10.0.0LDLRLDLintracellularendocytosisaciduptakelipoproteinreceptortraffickingaminosignalingsignaling-controlledregulationresponseenhancedAminohypercholesterolemiaMammaliancellsutilizeAkt-dependentdeployGlut4towardcellsurfacefacilitateglucoseLow-densitycargomediatingapolipoproteinB-containinglipoproteinsHoweverremainselusivedescribeuniquestressdirectsdeploymentLDLRscausinglikelyviaCacalcium/calmodulin-dependentproteinkinaseII-mediatedsignalingsindependentinductionautophagystress-inducedincreasein vitrocomparablepravastatinvivoacuteAASchallenge72 hratehepaticwithoutchangingtotalexpressionlevelReducingdietaryacids50%24 weeksamelioratedhighfatdiet-inducedheterozygousLDLR-deficientmicereductionsVLDLfractionssuggestidentificationadvancedunderstandingbiologymaybenefitfuturedevelopmentadditionaltherapeuticstrategiestreatingstarvation-inducedacceleratesclearancestarvationcalciumendocyticrecyclinglow-density

Similar Articles

Cited By