Interacting phenotypes and the coevolutionary process: Interspecific indirect genetic effects alter coevolutionary dynamics.

Stephen P De Lisle, Daniel I Bolnick, Edmund D Brodie, Allen J Moore, Joel W McGlothlin
Author Information
  1. Stephen P De Lisle: Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269. ORCID
  2. Daniel I Bolnick: Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269.
  3. Edmund D Brodie: Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, Virginia, 22904.
  4. Allen J Moore: Department of Entomology, University of Georgia, Athens, Georgia, 30602. ORCID
  5. Joel W McGlothlin: Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24060. ORCID

Abstract

Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3496-501 [PMID: 24550506]
  2. Fish Shellfish Immunol. 2013 Dec;35(6):1779-87 [PMID: 24036333]
  3. J Evol Biol. 2012 Jan;25(1):80-9 [PMID: 22022990]
  4. Integr Comp Biol. 2003 Jul;43(3):408-18 [PMID: 21680449]
  5. Nature. 2017 Aug 2;548(7665):43-51 [PMID: 28770836]
  6. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3904-8 [PMID: 11259674]
  7. Am Nat. 2005 Jul;166(1):12-25 [PMID: 15937786]
  8. Evolution. 2002 Oct;56(10):2067-82 [PMID: 12449493]
  9. Am Nat. 2015 May;185(5):594-609 [PMID: 25905503]
  10. Evol Lett. 2020 Jun 09;4(4):317-332 [PMID: 32774881]
  11. Insect Sci. 2018 Feb;25(1):2-23 [PMID: 28035791]
  12. Ecol Lett. 2019 Apr;22(4):717-725 [PMID: 30775838]
  13. Evolution. 1992 Dec;46(6):1674-1697 [PMID: 28567758]
  14. Parasitology. 1997;115 Suppl:S169-75 [PMID: 9571701]
  15. Proc Biol Sci. 2007 Dec 22;274(1629):3151-8 [PMID: 17939987]
  16. Ecol Lett. 2013 Nov;16(11):1382-92 [PMID: 24028500]
  17. Evolution. 2006 May;60(5):991-1003 [PMID: 16817539]
  18. Evolution. 1989 Sep;43(6):1209-1222 [PMID: 28564514]
  19. J Hered. 2022 Feb 17;113(1):91-101 [PMID: 34878556]
  20. Dis Aquat Organ. 2004 May 5;59(2):141-50 [PMID: 15212281]
  21. Philos Trans R Soc Lond B Biol Sci. 2014 Mar 31;369(1642):20130423 [PMID: 24686940]
  22. Science. 2001 Oct 12;294(5541):321-6 [PMID: 11598291]
  23. Ecol Evol. 2020 Oct 18;10(23):13095-13108 [PMID: 33304520]
  24. Evolution. 1980 May;34(3):611-612 [PMID: 28568694]
  25. Evolution. 1989 May;43(3):485-503 [PMID: 28568400]
  26. Evolution. 1997 Oct;51(5):1352-1362 [PMID: 28568644]
  27. Evolution. 1988 Mar;42(2):363-374 [PMID: 28567841]
  28. Evolution. 2010 Sep;64(9):2558-74 [PMID: 20394666]
  29. Trends Ecol Evol. 1998 Oct 1;13(10):403-7 [PMID: 21238360]
  30. Am Nat. 1998 Aug;152(2):237-48 [PMID: 18811388]
  31. Oecologia. 2004 Jul;140(2):328-34 [PMID: 15148602]
  32. J Parasitol. 2012 Apr;98(2):284-92 [PMID: 22007969]
  33. Evolution. 2003 Apr;57(4):806-15 [PMID: 12778550]
  34. Evolution. 2009 Jul;63(7):1785-95 [PMID: 19245673]
  35. Trends Ecol Evol. 2008 Jun;23(6):318-26 [PMID: 18439709]
  36. Am Nat. 2014 Jul;184(1):1-13 [PMID: 24921596]
  37. J Hered. 2022 Feb 17;113(1):109-119 [PMID: 35174861]
  38. Evolution. 1983 Nov;37(6):1210-1226 [PMID: 28556011]
  39. Trends Ecol Evol. 1998 Feb 1;13(2):64-9 [PMID: 21238202]
  40. Am Nat. 2010 May;175(5):525-37 [PMID: 20307203]
  41. Evolution. 1979 Mar;33(1Part2):402-416 [PMID: 28568194]
  42. Am Nat. 2006 Jan;167(1):105-17 [PMID: 16475103]
  43. Nature. 2002 Feb 14;415(6873):787-9 [PMID: 11845208]
  44. Proc Biol Sci. 2017 Sep 13;284(1862): [PMID: 28904134]
  45. Am Nat. 1999 Mar;153(3):254-266 [PMID: 29585974]
  46. Evolution. 2002 Apr;56(4):846-51 [PMID: 12038543]
  47. Nature. 2016 Jun 08;534(7606):191-9 [PMID: 27279212]
  48. Curr Biol. 2021 May 10;31(9):2038 [PMID: 33974861]
  49. Evolution. 1993 Jun;47(3):982-985 [PMID: 28567889]
  50. Nature. 1970 Aug 1;227(5257):520-1 [PMID: 5428476]
  51. PLoS Comput Biol. 2019 Apr 15;15(4):e1006988 [PMID: 30986245]
  52. Am Nat. 2010 Feb;175(2):186-96 [PMID: 20059364]
  53. Heredity (Edinb). 2007 May;98(5):249-58 [PMID: 17344805]
  54. Genetica. 2001;112-113:9-32 [PMID: 11838790]
  55. Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6575-6580 [PMID: 28588142]
  56. Evolution. 2007 Aug;61(8):1823-34 [PMID: 17683426]
  57. Ann Hum Genet. 1972 Apr;35(4):485-90 [PMID: 5073694]
  58. Am Nat. 2009 Sep;174(3):424-33 [PMID: 19627240]
  59. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4655-60 [PMID: 12640144]
  60. Ecol Lett. 2011 Jul;14(7):723-32 [PMID: 21615660]
  61. Proc Biol Sci. 2021 Jan 13;288(1942):20202483 [PMID: 33434463]
  62. Evolution. 2014 Oct;68(10):3039-46 [PMID: 24916074]
  63. Evolution. 2009 Jul;63(7):1796-806 [PMID: 19245394]
  64. Evolution. 1990 Dec;44(8):1947-1955 [PMID: 28564434]
  65. J Theor Biol. 1994 Oct 21;170(4):393-400 [PMID: 7996864]
  66. PLoS Biol. 2008 Mar 11;6(3):e60 [PMID: 18336073]

Grants

  1. /Royal Swedish Academy of Sciences
  2. /UCONN
  3. 1R01AI123659-01A1/National Institute of Allergy and Infectious Diseases
  4. R01 AI123659/NIAID NIH HHS
  5. 2019-03706/Vetenskapsrådet
  6. DEB 1457463/National Science Foundation

MeSH Term

Biological Evolution
Phenotype
Selection, Genetic
Social Evolution

Word Cloud

Created with Highcharts 10.0.0geneticspeciesindirecteffectsselectioninterspecificcoevolutionaryonereciprocalevolutionarychangesocialevolutioninteractionsmodelCoevolutioninteractphenotypesexpectedcanprocesscoevolutioncross-speciesoccursinfluenceanother'sfitnessresultingmanycoevolvinglineagestraitexpressionmodifiedgenotypesformingfeedbackloopsreminiscentmodelsintraspecificadapttheorywithin-speciescharacterizedimposedinteractingindividualscasetrait-basedderivegeneralexpressionsmultivariatetwobetween-speciescovariancevariesacrossspaceshowdominatedrivepatternscorrelatedbeyonddirectaloneextremecasesleadcovaryevenlacksvarianceMoreoverindicatesmaycomplexwaysdeterminecourseImportantlymakesempiricallytestablepredictionsdifferentformscontributeInteractingprocess:Interspecificalterdynamicsquantitativegenetics

Similar Articles

Cited By