Targeted protein degradation: from small molecules to complex organelles-a Keystone Symposia report.

Jennifer Cable, Eilika Weber-Ban, Tim Clausen, Kylie J Walters, Michal Sharon, Daniel J Finley, Yangnan Gu, John Hanna, Yue Feng, Sascha Martens, Anne Simonsen, Malene Hansen, Hong Zhang, Jonathan M Goodwin, Alessio Reggio, Chunmei Chang, Liang Ge, Brenda A Schulman, Raymond J Deshaies, Ivan Dikic, J Wade Harper, Ingrid E Wertz, Nicolas H Thomä, Mikołaj Słabicki, Judith Frydman, Ursula Jakob, Della C David, Eric J Bennett, Carolyn R Bertozzi, Richa Sardana, Vinay V Eapen, Serena Carra
Author Information
  1. Jennifer Cable: PhD Science Writer, New York, New York.
  2. Eilika Weber-Ban: Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
  3. Tim Clausen: Research Institute of Molecular Pathology (IMP), Vienna BioCenter and Medical University of Vienna, Vienna, Austria.
  4. Kylie J Walters: Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland.
  5. Michal Sharon: Department of Bimolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
  6. Daniel J Finley: Department of Cell Biology, Harvard Medical School, Boston, Massachusetts.
  7. Yangnan Gu: Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, California.
  8. John Hanna: Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
  9. Yue Feng: Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
  10. Sascha Martens: Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
  11. Anne Simonsen: Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  12. Malene Hansen: Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, California.
  13. Hong Zhang: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences and College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
  14. Jonathan M Goodwin: Casma Therapeutics, Cambridge, Massachusetts.
  15. Alessio Reggio: Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
  16. Chunmei Chang: Molecular and Cell Biology, University of California, Berkeley, Berkeley, California.
  17. Liang Ge: State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
  18. Brenda A Schulman: Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
  19. Raymond J Deshaies: Amgen, Inc., Thousand Oaks, California.
  20. Ivan Dikic: Institute of Biochemistry II, School of Medicine and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
  21. J Wade Harper: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.
  22. Ingrid E Wertz: Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California.
  23. Nicolas H Thomä: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
  24. Mikołaj Słabicki: Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
  25. Judith Frydman: Biophysics Graduate Program, Department of Biology and Department of Genetics, Stanford University, Stanford, California.
  26. Ursula Jakob: Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
  27. Della C David: German Center for Neurodegenerative Diseases (DZNE), and Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
  28. Eric J Bennett: Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California.
  29. Carolyn R Bertozzi: Department of Chemistry and Stanford ChEM-H, Stanford University and Howard Hughes Medical Institute, Stanford, California.
  30. Richa Sardana: Weill Institute of Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
  31. Vinay V Eapen: Department of Cell Biology, Harvard Medical School, Boston, Massachusetts.
  32. Serena Carra: Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Abstract

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.

Keywords

References

  1. Chen, B., M. Retzlaff, T. Roos, et al. 2011. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3: a004374.
  2. Labbadia, J. & R.I. Morimoto. 2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84: 435-464.
  3. Vinchi, F. 2018. Erythroid differentiation: a matter of proteome remodeling. Hemasphere 2: e26.
  4. Harper, J.W. & B.A. Schulman. 2021. Cullin-ring ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. Annu. Rev. Biochem. 90: 403-429.
  5. Nguyen, H.C., W. Wang & Y. Xiong. 2017. Cullin-RING E3 ubiquitin ligases: bridges to destruction. Subcell. Biochem. 83: 323-347.
  6. Soucy, T.A., P.G. Smith, M.A. Milhollen, et al. 2009. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458: 732-736.
  7. Scott, D.C., D.Y. Rhee, D.M. Duda, et al. 2016. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166: 1198-1214.e24.
  8. Kelsall, I.R., D.M. Duda, J.L. Olszewski, et al. 2013. TRIAD1 and HHARI bind to and are activated by distinct neddylated cullin-RING ligase complexes. EMBO J. 32: 2848-2860.
  9. Duda, D.M., J.L. Olszewski, J.P. Schuermann, et al. 2013. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21: 1030-1041.
  10. Horn-Ghetko, D., D.T. Krist, J.R. Prabu, et al. 2021. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Nature 590: 671-676.
  11. Schnell, H.M., R.M. Walsh, S. Rawson, et al. 2021. Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis. Nat. Struct. Mol. Biol. 28: 418-425.
  12. Ramos, P.C., J. Höckendorff, E.S. Johnson, et al. 1998. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92: 489-499.
  13. Darwin, K.H., S. Ehrt, J.-C. Gutierrez-Ramos, et al. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302: 1963-1966.
  14. Gandotra, S., D. Schnappinger, M. Monteleone, et al. 2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat. Med. 13: 1515-1520.
  15. Pearce, M.J., J. Mintseris, J. Ferreyra, et al. 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322: 1104-1107.
  16. Burns, K.E., W.-T. Liu, H.I.M. Boshoff, et al. 2009. Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 284: 3069-3075.
  17. Striebel, F., F. Imkamp, M. Sutter, et al. 2009. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 16: 647-651.
  18. Sutter, M., F. Striebel, F.F. Damberger, et al. 2009. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett. 583: 3151-3157.
  19. Wang, T., K.H. Darwin & H. Li. 2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat. Struct. Mol. Biol. 17: 1352-1357.
  20. Fuhrmann, J., A. Schmidt, S. Spiess, et al. 2009. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324: 1323-1327.
  21. Trentini, D.B., M.J. Suskiewicz, A. Heuck, et al. 2016. Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 539: 48-53.
  22. Suskiewicz, M.J., B. Hajdusits, R. Beveridge, et al. 2019. Structure of McsB, a protein kinase for regulated arginine phosphorylation. Nat. Chem. Biol. 15: 510-518.
  23. Hajdusits, B., M.J. Suskiewicz, N. Hundt, et al. 2021. McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation. eLife 10: e63505.
  24. Morreale, F.E., S. Kleine, J. Leodolter, et al. 2021. BacPROTACs mediate targeted protein degradation in bacteria. bioRxiv 2021.06.09.447781.
  25. Dekel, E., D. Yaffe, I. Rosenhek-Goldian, et al. 2021. 20S proteasomes secreted by the malaria parasite promote its growth. Nat. Commun. 12: 1172.
  26. Zaffagnini, G. & S. Martens. 2016. Mechanisms of selective autophagy. J. Mol. Biol. 428: 1714-1724.
  27. Ciuffa, R., T. Lamark, A.K. Tarafder, et al. 2015. The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep. 11: 748-758.
  28. Zaffagnini, G., A. Savova, A. Danieli, et al. 2018. P62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37: e98308.
  29. Turco, E., M. Witt, C. Abert, et al. 2019. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell 74: 330-346.e11.
  30. Turco, E., A. Savova, F. Gere, et al. 2021. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat. Commun. 12: 5212.
  31. Chang, C., X. Shi, L.E. Jensen, et al. 2021. Reconstitution of cargo-induced LC3 lipidation in mammalian selective autophagy. Sci. Adv. 7: eabg4922.
  32. Wilkinson, D.S., J.S. Jariwala, E. Anderson, et al. 2015. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol. Cell 57: 55-68.
  33. Nieto-Torres, J.L., S.-L. Shanahan, R. Chassefeyre, et al. 2021. LC3B phosphorylation regulates FYCO1 binding and directional transport of autophagosomes. Curr. Biol. 31: 3440-3449.e7.
  34. Shrestha, B.K., M. Skytte Rasmussen, Y.P. Abudu, et al. 2020. NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. J. Biol. Chem. 295: 1240-1260.
  35. Pankiv, S. & T. Johansen. 2010. FYCO1: linking autophagosomes to microtubule plus end-directing molecular motors. Autophagy 6: 550-552.
  36. Pankiv, S., E.A. Alemu, A. Brech, et al. 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188: 253-269.
  37. Olsvik, H.L., T. Lamark, K. Takagi, et al. 2015. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J. Biol. Chem. 290: 29361-29374.
  38. Sakurai, S., T. Tomita, T. Shimizu, et al. 2017. The crystal structure of mouse LC3B in complex with the FYCO1 LIR reveals the importance of the flanking region of the LIR motif. Acta Crystallogr. Sect. F Struct. Biol. Commun. 73: 130-137.
  39. Nieto-Torres, J.L., A.M. Leidal, J. Debnath, et al. 2021. Beyond autophagy: the expanding roles of ATG8 proteins. Trends Biochem. Sci. 46: 673-686.
  40. Hansen, M., D.C. Rubinsztein & D.W. Walker. 2018. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19: 579-593.
  41. Aman, Y., T. Schmauck-Medina, M. Hansen, et al. 2021. Autophagy in healthy aging and disease. Nat. Aging 1: 634-650.
  42. Fengsrud, M., C. Raiborg, T.O. Berg, et al. 2000. Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem. J. 352(Pt 3): 773-781.
  43. Thornton, C., A. Jones, S. Nair, et al. 2018. Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury. FEBS Lett. 592: 812-830.
  44. Munson, M.J., B.J. Mathai, M.Y.W. Ng, et al. 2021. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat. Commun. 12: 6101.
  45. Scrivo, A., M. Bourdenx, O. Pampliega, et al. 2018. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17: 802-815.
  46. Goodwin, J.M., W.G. Walkup, K. Hooper, et al. 2021. GABARAP membrane conjugation sequesters the FLCN-FNIP tumor suppressor complex to activate TFEB and lysosomal biogenesis. Sci. Adv. 7: abj2485.
  47. Sardana, R., L. Zhu & S.D. Emr. 2019. Rsp5 ubiquitin ligase-mediated quality control system clears membrane proteins mistargeted to the vacuole membrane. J. Cell Biol. 218: 234-250.
  48. Nguyen, A.T., M.A. Prado, P.J. Schmidt, et al. 2017. UBE2O remodels the proteome during terminal erythroid differentiation. Science 357: eaan0218.
  49. Tian, Y., Z. Li, W. Hu, et al. 2010. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141: 1042-1055.
  50. Zhang, Y., L. Yan, Z. Zhou, et al. 2009. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136: 308-321.
  51. Li, S., P. Yang, E. Tian, et al. 2013. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. Mol. Cell 52: 421-433.
  52. Putnam, A., M. Cassani, J. Smith, et al. 2019. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat. Struct. Mol. Biol. 26: 220-226.
  53. Zhang, G., Z. Wang, Z. Du, et al. 2018. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174: 1492-1506.e22.
  54. Noda, N.N., Z. Wang & H. Zhang. 2020. Liquid-liquid phase separation in autophagy. J. Cell Biol. 219: e202004062.
  55. Ganassi, M., D. Mateju, I. Bigi, et al. 2016. A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol. Cell 63: 796-810.
  56. Chitiprolu, M., C. Jagow, V. Tremblay, et al. 2018. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 9: 2794.
  57. Turakhiya, A., S.R. Meyer, G. Marincola, et al. 2018. ZFAND1 recruits p97 and the 26S proteasome to promote the clearance of arsenite-induced stress granules. Mol. Cell 70: 906-919.e7.
  58. Zhang, P., B. Fan, P. Yang, et al. 2019. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife 8: e39578.
  59. Mediani, L., F. Antoniani, V. Galli, et al. 2021. Hsp90-mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling. EMBO Rep. 22: e51740.
  60. Wippich, F., B. Bodenmiller, M.G. Trajkovska, et al. 2013. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152: 791-805.
  61. David, D.C. 2012. Aging and the aggregating proteome. Front. Genet. 3: 247.
  62. David, D.C., N. Ollikainen, J.C. Trinidad, et al. 2010. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol. 8: e1000450.
  63. Groh, N., I. Gallotta, M.C. Lechler, et al. 2017. Methods to study changes in inherent protein aggregation with age in Caenorhabditis elegans. J. Vis. Exp.
  64. Huang, C., S. Wagner-Valladolid, A.D. Stephens, et al. 2019. Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. eLife 8: e43059.
  65. Jung, R., M.C. Lechler, C. Rödelsperger, et al. 2020. Tissue-specific safety mechanism results in opposite protein aggregation patterns during aging. bioRxiv. 2020.12.04.409771.
  66. Bakowski, M.A., C.A. Desjardins, M.G. Smelkinson, et al. 2014. Ubiquitin-mediated response to microsporidia and virus infection in C. elegans. PLoS Pathog. 10: e1004200.
  67. Gallotta, I., A. Sandhu, M. Peters, et al. 2020. Extracellular proteostasis prevents aggregation during pathogenic attack. Nature 584: 410-414.
  68. Sebastiani, P., A. Gurinovich, H. Bae, et al. 2017. Four genome-wide association studies identify new extreme longevity variants. J. Gerontol. A Biol. Sci. Med. Sci. 72: 1453-1464.
  69. Sebastiani, P., N. Solovieff, A.T. Dewan, et al. 2012. Genetic signatures of exceptional longevity in humans. PLoS One 7: e29848.
  70. Martin, G.M., A. Bergman & N. Barzilai. 2007. Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet. 3: e125.
  71. Belousov, V.V., A.F. Fradkov, K.A. Lukyanov, et al. 2006. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3: 281-286.
  72. Gutscher, M., A.-L. Pauleau, L. Marty, et al. 2008. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5: 553-559.
  73. Bazopoulou, D., D. Knoefler, Y. Zheng, et al. 2019. Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576: 301-305.
  74. Greer, E.L., T.J. Maures, A.G. Hauswirth, et al. 2010. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466: 383-387.
  75. Greer, E.L., T.J. Maures, D. Ucar, et al. 2011. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479: 365-371.
  76. Burla, R., M. La Torre, K. Maccaroni, et al. 2020. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 11: 205-218.
  77. Huang, A., Y. Tang, X. Shi, et al. 2020. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat. Commun. 11: 3284.
  78. Bays, N.W. & R.Y. Hampton. 2002. Cdc48-Ufd1-Npl4: stuck in the middle with Ub. Curr. Biol. 12: R366-R371.
  79. Nouri, K., Y. Feng & A.D. Schimmer. 2020. Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death Dis. 11: 841.
  80. Papadopoulos, C., B. Kravic & H. Meyer. 2020. Repair or lysophagy: dealing with damaged lysosomes. J. Mol. Biol. 432: 231-239.
  81. Gutierrez, M.G. & J.G. Carlton. 2018. ESCRTs offer repair service. Science 360: 33-34.
  82. Eapen, V.V., S. Swarup, M.J. Hoyer, et al. 2021. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. eLife 10: e72328.
  83. Chino, H. & N. Mizushima. 2020. ER-phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 30: 384-398.
  84. Reggio, A., V. Buonomo & P. Grumati. 2020. Eating the unknown: xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp. Cell Res. 396: 112276.
  85. Reggio, A., V. Buonomo, R. Berkane, et al. 2021. Role of FAM134 paralogues in endoplasmic reticulum remodeling, ER-phagy, and collagen quality control. EMBO Rep. 22: e52289.
  86. Garshott, D.M., E. Sundaramoorthy, M. Leonard, et al. 2020. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. eLife 9: e54023.
  87. Juszkiewicz, S., V. Chandrasekaran, Z. Lin, et al. 2018. ZNF598 is a quality control sensor of collided ribosomes. Mol. Cell 72: 469-481.e7.
  88. Ikeuchi, K., P. Tesina, Y. Matsuo, et al. 2019. Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J. 38: e100276.
  89. Garshott, D.M., H. An, E. Sundaramoorthy, et al. 2021. iRQC, a surveillance pathway for 40S ribosomal quality control during mRNA translation initiation. Cell Rep. 36: 109642.
  90. Meyer, C., A. Garzia, P. Morozov, et al. 2020. The G3BP1-family-USP10 deubiquitinase complex rescues ubiquitinated 40s subunits of ribosomes stalled in translation from lysosomal degradation. Mol. Cell 77: 1193-1205.e5.
  91. Samant, R.S., C.M. Livingston, E.M. Sontag, et al. 2018. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature 563: 407-411.
  92. Fhu, C.W. & A. Ali. 2021. Dysregulation of the ubiquitin proteasome system in human malignancies: a window for therapeutic intervention. Cancers 13: 1513.
  93. Schreiner, P., X. Chen, K. Husnjak, et al. 2008. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453: 548-552.
  94. Husnjak, K., S. Elsasser, N. Zhang, et al. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453: 481-488.
  95. Anchoori, R.K., R. Jiang, S. Peng, et al. 2018. Covalent Rpn13-binding inhibitors for the treatment of ovarian cancer. ACS Omega 3: 11917-11929.
  96. Anchoori, R.K., B. Karanam, S. Peng, et al. 2013. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24: 791-805.
  97. Randles, L., R.K. Anchoori, R.B.S. Roden, et al. 2016. The proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. J. Biol. Chem. 291: 8773-8783.
  98. Trader, D.J., S. Simanski & T. Kodadek. 2015. A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor rpn13 is toxic to multiple myeloma cells. J. Am. Chem. Soc. 137: 6312-6319.
  99. Dickson, P., D. Abegg, E. Vinogradova, et al. 2020. Physical and functional analysis of the putative Rpn13 inhibitor RA190. Cell Chem. Biol. 27: 1371-1382.e6.
  100. Dickson, P., S. Simanski, J.M. Ngundu, et al. 2020. Mechanistic studies of the multiple myeloma and melanoma cell-selective toxicity of the Rpn13-binding peptoid KDT-11. Cell Chem. Biol. 27: 1383-1395.e5.
  101. Song, Y., A. Ray, S. Li, et al. 2016. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma. Leukemia 30: 1877-1886.
  102. Osei-Amponsa, V., V. Sridharan, M. Tandon, et al. 2020. Impact of losing hRpn13 Pru or UCHL5 on proteasome clearance of ubiquitinated proteins and RA190 cytotoxicity. Mol. Cell. Biol. 40: e00122-20.
  103. Lu, X., U. Nowicka, V. Sridharan, et al. 2017. Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nat. Commun. 8: 15540.
  104. VanderLinden, R.T., C.W. Hemmis, T. Yao, et al. 2017. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J. Biol. Chem. 292: 9493-9504.
  105. Lu, X., V.R. Sabbasani, V. Osei-Amponsa, et al. 2021. Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Nat. Commun. 12. 7318. https://doi.org/10.1038/s41467-021-27570-4.
  106. Vassilev, L.T., B.T. Vu, B. Graves, et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844-848.
  107. Cummins, J.M., C. Rago, M. Kohli, et al. 2004. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428: 1 p following 486.
  108. Li, M., C.L. Brooks, N. Kon, et al. 2004. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13: 879-886.
  109. Zhang, Y., L. Zhou, L. Rouge, et al. 2013. Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7. Nat. Chem. Biol. 9: 51-58.
  110. Ioannou, N., K. Jain & A.G. Ramsay. 2021. Immunomodulatory drugs for the treatment of B cell malignancies. Int. J. Mol. Sci. 22: 8572.
  111. Petzold, G., E.S. Fischer & N.H. Thomä. 2016. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532: 127-130.
  112. Sievers, Q.L., G. Petzold, R.D. Bunker, et al. 2018. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362: eaat0572.
  113. Słabicki, M., Z. Kozicka, G. Petzold, et al. 2020. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585: 293-297.
  114. Lv, L., P. Chen, L. Cao, et al. 2020. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 9: e59994.
  115. Mayor-Ruiz, C., S. Bauer, M. Brand, et al. 2020. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16: 1199-1207.
  116. Słabicki, M., H. Yoon, J. Koeppel, et al. 2020. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588: 164-168.
  117. Deshaies, R.J. 2020. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature 580: 329-338.
  118. Arvinas Inc. 2020. A phase 1/2, open label, dose escalation, and cohort expansion clinical trial to evaluate the safety, tolerability, and pharmacokinetics of ARV-471 alone and in combination with Palbociclib (IBRANCE®) in patients with estrogen receptor positive/human epidermal growth factor receptor 2 negative (ER+/HER2-) locally advanced or metastatic breast cancer, who have received prior hormonal therapy and chemotherapy in the locally advanced/metastatic setting. clinicaltrials.gov.
  119. Arvinas Inc. 2021. A phase 1/2, open-label, dose escalation, and cohort expansion clinical trial to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of ARV-110 in patients with metastatic castration resistant prostate cancer. clinicaltrials.gov.
  120. Schoenfeld, A.J., C. Bandlamudi, J.A. Lavery, et al. 2020. The genomic landscape of SMARCA4 alterations and associations with outcomes in patients with lung cancer. Clin. Cancer Res. 26: 5701-5708.
  121. van Wijk, S.J.L., F. Fricke, L. Herhaus, et al. 2017. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat. Microbiol. 2: 17066.
  122. Noad, J., A. von der Malsburg, C. Pathe, et al. 2017. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat. Microbiol. 2: 17063.
  123. Wild, P., H. Farhan, D.G. McEwan, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228-233.
  124. Luo, H. 2016. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr. Opin. Virol. 17: 1-10.
  125. Zhang, L., D. Lin, X. Sun, et al. 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368: 409-412.
  126. Jin, Z., X. Du, Y. Xu, et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582: 289-293.
  127. Dai, W., B. Zhang, X.-M. Jiang, et al. 2020. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368: 1331-1335.
  128. Shin, D., R. Mukherjee, D. Grewe, et al. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587: 657-662.
  129. Rut, W., Z. Lv, M. Zmudzinski, et al. 2020. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci. Adv. 6: eabd4596.
  130. Fu, Z., B. Huang, J. Tang, et al. 2021. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 12: 488.
  131. Ratia, K., S. Pegan, J. Takayama, et al. 2008. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA 105: 16119-16124.
  132. Banik, S.M., K. Pedram, S. Wisnovsky, et al. 2020. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584: 291-297.
  133. Burr, M.L., C.E. Sparbier, Y.-C. Chan, et al. 2017. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549: 101-105.
  134. Wang, H., H. Yao, C. Li, et al. 2019. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat. Chem. Biol. 15: 42-50.
  135. Ahn, G., S.M. Banik, C.L. Miller, et al. 2021. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17: 937-946.

Grants

  1. R01 GM144367/NIGMS NIH HHS
  2. R21 AG046799/NIA NIH HHS
  3. R35 GM122506/NIGMS NIH HHS
  4. W 1261/Austrian Science Fund FWF

MeSH Term

Autophagy
Humans
Organelles
Proteasome Endopeptidase Complex
Proteins
Proteolysis
Ubiquitin

Chemicals

Proteins
Ubiquitin
Proteasome Endopeptidase Complex

Word Cloud

Created with Highcharts 10.0.0proteindegradationpathwaysproteinsTargetedpropercellularProteinubiquitinautophagyKeystonedegradation:smallmoleculescomplexcancriticalfunctiondevelopmentproteasomessystemendosome-lysosomepathwaymusttightlyregulatedensureeliminationmisfoldedaggregatedregulatechanginglevelsdifferentiationensuringnormalremainunscathedalsogarneredinterestmeansselectivelyeliminatetargetmaydifficultinhibitviamechanismsJune782021severalexpertsmetvirtuallyeSymposium"Targetingorganelles"eventbroughttogetherresearchersworkingdifferenteffortbegindevelopholisticintegratedvisionincorporatesmajorunderstandchangesleaddiseasepathologyalternativelyleveragednoveltherapeuticsorganelles-aSymposiareportaggregationlysophagyproteasome

Similar Articles

Cited By