Network analysis of host-pathogen protein interactions in microbe induced cardiovascular diseases.

Nirupma Singh, Sneha Rai, Rakesh Bhatnagar, Sonika Bhatnagar
Author Information
  1. Nirupma Singh: Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India.
  2. Sneha Rai: Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India.
  3. Rakesh Bhatnagar: Amity University, Jaipur, Rajasthan, India.
  4. Sonika Bhatnagar: Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India.

Abstract

Large-scale visualization and analysis of HPIs involved in microbial CVDs can provide crucial insights into the mechanisms of pathogenicity. The comparison of CVD associated HPIs with the entire set of HPIs can identify the pathways specific to CVDs. Therefore, topological properties of HPI networks in CVDs and all pathogens was studied using Cytoscape3.5.1. Ontology and pathway analysis were done using KOBAS 3.0. HPIs of Papilloma, Herpes, Influenza A virus as well as Yersinia pestis and Bacillus anthracis among bacteria were predominant in the whole (wHPI) and the CVD specific (cHPI) network. The central viral and secretory bacterial proteins were predicted virulent. The central viral proteins had higher number of interactions with host proteins in comparison with bacteria. Major fraction of central and essential host proteins interacts with central viral proteins. Alpha-synuclein, Ubiquitin ribosomal proteins, TATA-box-binding protein, and Polyubiquitin-C &B proteins were the top interacting proteins specific to CVDs. Signaling by NGF, Fc epsilon receptor, EGFR and ubiquitin mediated proteolysis were among the top enriched CVD specific pathways. DEXDc and HELICc were enriched host mimicry domains that may help in hijacking of cellular machinery by pathogens. This study provides a system level understanding of cardiac damage in microbe induced CVDs.

Keywords

References

  1. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  2. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  3. Cell Host Microbe. 2009 Jun 18;5(6):559-70 [PMID: 19527883]
  4. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D271-2 [PMID: 14681410]
  5. Sci Rep. 2019 Mar 11;9(1):4039 [PMID: 30858555]
  6. Nucleic Acids Res. 2014 Jan;42(Database issue):D574-80 [PMID: 24243843]
  7. Przegl Epidemiol. 2004;58(4):671-6 [PMID: 15810509]
  8. Curr HIV/AIDS Rep. 2016 Feb;13(1):44-52 [PMID: 26910597]
  9. PLoS Comput Biol. 2012;8(10):e1002720 [PMID: 23071431]
  10. BMC Bioinformatics. 2020 Sep 10;21(1):400 [PMID: 32912135]
  11. J Bioinform Comput Biol. 2013 Apr;11(2):1230001 [PMID: 23600809]
  12. Semin Cell Dev Biol. 2016 Oct;58:136-45 [PMID: 27287306]
  13. mBio. 2020 Oct 6;11(5): [PMID: 33024033]
  14. Database (Oxford). 2016 Jul 03;2016: [PMID: 27374121]
  15. Sci Rep. 2019 Feb 5;9(1):1434 [PMID: 30723266]
  16. Nucleic Acids Res. 2013 Jan;41(Database issue):D1228-33 [PMID: 23180781]
  17. Arterioscler Thromb Vasc Biol. 1998 Mar;18(3):339-48 [PMID: 9514401]
  18. PLoS Pathog. 2012;8(7):e1002772 [PMID: 22807672]
  19. Proteomics. 2015 Aug;15(15):2597-601 [PMID: 25921073]
  20. Curr Drug Targets. 2008 Feb;9(2):150-7 [PMID: 18288966]
  21. PLoS One. 2011;6(9):e24306 [PMID: 21912686]
  22. Toxicol Appl Pharmacol. 2015 Mar 1;283(2):83-91 [PMID: 25596431]
  23. Gene. 2018 Feb 5;642:84-94 [PMID: 29129810]
  24. Nucleic Acids Res. 2007 Jan;35(Database issue):D572-4 [PMID: 17135203]
  25. Trends Genet. 2005 Jan;21(1):16-20 [PMID: 15680508]
  26. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  27. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9 [PMID: 16381927]
  28. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D452-5 [PMID: 14681455]
  29. ACS Infect Dis. 2016 Nov 11;2(11):744-745 [PMID: 27933787]
  30. Front Plant Sci. 2017 May 29;8:893 [PMID: 28611808]
  31. Bioinformatics. 2008 Aug 1;24(15):1743-4 [PMID: 18556668]
  32. Bioinformatics. 2013 May 15;29(10):1357-8 [PMID: 23515528]
  33. Nucleic Acids Res. 2015 Jan;43(Database issue):D645-55 [PMID: 25414340]
  34. mBio. 2018 Dec 18;9(6): [PMID: 30563907]
  35. Cardiol Clin. 1999 May;17(2):271-81 [PMID: 10384826]
  36. Nucleic Acids Res. 2011 Jan;39(Database issue):D691-7 [PMID: 21067998]
  37. Nucleic Acids Res. 2015 Jan;43(Database issue):D321-7 [PMID: 25378329]
  38. mSystems. 2018 Jan 23;3(1): [PMID: 29404423]
  39. J Immunol. 2005 Sep 1;175(5):2851-8 [PMID: 16116171]
  40. J Proteome Res. 2017 Mar 3;16(3):1193-1206 [PMID: 28099032]
  41. Curr Opin HIV AIDS. 2016 Mar;11(2):216-25 [PMID: 26599166]
  42. Mol Biol Evol. 2005 Apr;22(4):803-6 [PMID: 15616139]
  43. PLoS Comput Biol. 2013;9(2):e1002910 [PMID: 23436988]
  44. Curr Opin Microbiol. 2010 Feb;13(1):41-6 [PMID: 20036613]
  45. Front Microbiol. 2015 Apr 09;6:235 [PMID: 25914674]
  46. Brief Bioinform. 2017 Jan;18(1):85-97 [PMID: 26883326]
  47. Sci Rep. 2020 Jul 21;10(1):12045 [PMID: 32694520]
  48. Nucleic Acids Res. 2000 Jan 1;28(1):289-91 [PMID: 10592249]
  49. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  50. Circulation. 1997 Dec 2;96(11):4095-103 [PMID: 9403635]
  51. Nat Rev Microbiol. 2018 Mar;16(3):171-181 [PMID: 29307889]
  52. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  53. Nucleic Acids Res. 2009 Jan;37(Database issue):D661-8 [PMID: 18984613]
  54. Microbiol Spectr. 2016 Feb;4(1): [PMID: 26999395]
  55. BMC Bioinformatics. 2019 Jun 3;20(1):297 [PMID: 31159726]
  56. Antioxid Redox Signal. 2014 Dec 10;21(17):2322-43 [PMID: 25133688]
  57. Nat Rev Immunol. 2015 Feb;15(2):117-29 [PMID: 25614321]
  58. Nat Commun. 2018 Jun 13;9(1):2312 [PMID: 29899369]
  59. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9 [PMID: 14681372]
  60. World J Gastroenterol. 2018 Nov 7;24(41):4617-4621 [PMID: 30416309]
  61. Circ Res. 2019 Mar;124(5):747-756 [PMID: 30727837]
  62. Methods Mol Biol. 2008;416:433-57 [PMID: 18392986]
  63. BMC Evol Biol. 2009 Apr 28;9:85 [PMID: 19400936]
  64. Genome Biol. 2007;8(5):R95 [PMID: 17535438]
  65. Cell Rep Med. 2020 Jul 21;1(4):100052 [PMID: 32835305]
  66. Cell Mol Immunol. 2016 Sep;13(5):560-76 [PMID: 27524111]
  67. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  68. J Immunol Res. 2017;2017:2197615 [PMID: 28321417]
  69. Comput Biol Chem. 2022 Feb;96:107601 [PMID: 34801846]
  70. BMC Bioinformatics. 2008 Jan 28;9:62 [PMID: 18226234]
  71. Comput Biol Med. 2021 Jun;133:104417 [PMID: 33901711]
  72. Phys Rev Lett. 2001 Apr 2;86(14):3200-3 [PMID: 11290142]
  73. Syst Synth Biol. 2014 Mar;8(1):73-81 [PMID: 24592293]
  74. Nat Commun. 2017 Jan 16;8:14092 [PMID: 28090086]
  75. Postgrad Med J. 2002 Apr;78(918):216-24 [PMID: 11930024]
  76. Sci Rep. 2018 Mar 22;8(1):5079 [PMID: 29567998]
  77. PLoS One. 2017 Jan 13;12(1):e0169986 [PMID: 28085961]
  78. Phys Rev Lett. 2000 Nov 20;85(21):4626-8 [PMID: 11082612]
  79. Mol Inform. 2021 Oct 22;:e2100115 [PMID: 34676983]
  80. Mol Biosyst. 2017 Jun 27;13(7):1377-1387 [PMID: 28561835]
  81. Front Microbiol. 2017 Aug 17;8:1557 [PMID: 28861068]
  82. Sci Rep. 2019 Mar 21;9(1):4980 [PMID: 30899073]
  83. Nucleic Acids Res. 2009 Jan;37(Database issue):D669-73 [PMID: 18974184]
  84. J Cardiovasc Transl Res. 2014 Mar;7(2):165-71 [PMID: 24263348]
  85. Clin Chem. 2019 Jan;65(1):80-86 [PMID: 30504259]
  86. Annu Rev Pathol. 2019 Jan 24;14:153-184 [PMID: 30230967]
  87. Arch Med Res. 2015 Jul;46(5):339-50 [PMID: 26004263]
  88. Nat Rev Cardiol. 2020 Sep;17(9):543-558 [PMID: 32690910]
  89. Nat Methods. 2012 Apr;9(4):345-50 [PMID: 22453911]
  90. J Biomed Sci. 2019 Jun 19;26(1):47 [PMID: 31215493]
  91. Int J Mol Sci. 2021 Mar 24;22(7): [PMID: 33805011]

Word Cloud

Created with Highcharts 10.0.0proteinsCVDscentralHPIsspecificanalysisCVDviralhostcancomparisonpathwayspathogensusingpathwayamongbacteriainteractionsproteintopenrichedmicrobeinducedNetworkLarge-scalevisualizationinvolvedmicrobialprovidecrucialinsightsmechanismspathogenicityassociatedentiresetidentifyThereforetopologicalpropertiesHPInetworksstudiedCytoscape351OntologydoneKOBAS30PapillomaHerpesInfluenzaviruswellYersiniapestisBacillusanthracispredominantwholewHPIcHPInetworksecretorybacterialpredictedvirulenthighernumberMajorfractionessentialinteractsAlpha-synucleinUbiquitinribosomalTATA-box-bindingPolyubiquitin-C&BinteractingSignalingNGFFcepsilonreceptorEGFRubiquitinmediatedproteolysisDEXDcHELICcmimicrydomainsmayhelphijackingcellularmachinerystudyprovidessystemlevelunderstandingcardiacdamagehost-pathogencardiovasculardiseasesHP-PPIsimmune

Similar Articles

Cited By