Intranasal delivery of Clozapine using nanoemulsion-based gels: An approach for bioavailability enhancement.

Nourhan A Abdulla, Gehan F Balata, Hanaa A El-Ghamry, Eman Gomaa
Author Information
  1. Nourhan A Abdulla: Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
  2. Gehan F Balata: Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
  3. Hanaa A El-Ghamry: Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
  4. Eman Gomaa: Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.

Abstract

Limited solubility and hepatic first-pass metabolism are the main causes of low bioavailability of anti-schizophrenic drug, Clozapine (CZP). The objective of the study was to develop and validate nanoemulsion (NE) based gel of CZP for intranasal administration as an approach for bioavailability enhancement. Solubility of CZP was initially investigated in different oils, surfactants and co-surfactants, then pseudoternary phase diagrams were constructed to select the optimized ratio of oil, surfactant and co-surfactant. Clear and transparent NE formulations were characterized in terms of droplet size, viscosity, solubilization capacity, transmission electron microscopy, drug release and compatibility studies. Selected NEs were incorporated into different gel bases using combination of two thermosensitive polymers; Pluronic® F-127 (PF127) and F-68 (PF68). NE-based gels (NG) were investigated for gelation temperature, viscosity, gel strength, spreadability and stability. Moreover, selected NGs were evaluated for permeation, mucoadhesive strength and nasal ciliotoxicity. Peppermint oil, tween 80 and transcutol P were chosen for NE preparation owing to their maximum CZP solubilization. Clear NE points extrapolated from tween 80:transcutol P (1:1) phase diagram and passed dispersibility and stability tests, demonstrated globule size of 67.99 to 354.96 nm and zeta potential of -12.4 to -3.11 mV with enhanced CZP release (>90% in some formulations). After incorporation of the selected N3 and N9 formulations of oil:Smix of 1:7 and 2:7, respectively to a mixture of PF127 and PF68 (20:2% w/w), the resultant NG formulations exhibited optimum gelation temperature and viscosity with enhanced CZP permeation and retention through sheep nasal mucosa. ciliotoxicity examinations of the optimum NGs displayed no inflammation or damage of the lining epithelium and the underlying cells of the nasal mucosa. In conclusion, NE-based gels may be a promising dosage form of CZP for schizophrenia treatment.

Keywords

References

  1. Int J Pharm Investig. 2015 Oct-Dec;5(4):205-13 [PMID: 26682191]
  2. Ind Psychiatry J. 2017 Jul-Dec;26(2):215-222 [PMID: 30089972]
  3. Drug Deliv. 2021 Dec;28(1):229-239 [PMID: 33501873]
  4. AAPS PharmSciTech. 2020 Jan 23;21(3):80 [PMID: 31975311]
  5. Pharm Dev Technol. 2016;21(1):43-53 [PMID: 25403112]
  6. ScientificWorldJournal. 2014 Mar 24;2014:280928 [PMID: 24790559]
  7. PLoS One. 2017 Dec 14;12(12):e0189478 [PMID: 29240797]
  8. Pharmaceutics. 2018 Mar 30;10(2): [PMID: 29601486]
  9. Drug Des Devel Ther. 2011;5:311-23 [PMID: 21792294]
  10. Pharm Dev Technol. 2021 Sep;26(7):709-728 [PMID: 34176433]
  11. Crit Rev Ther Drug Carrier Syst. 2013;30(5):411-34 [PMID: 24099327]
  12. Beilstein J Nanotechnol. 2018 Apr 3;9:1050-1074 [PMID: 29719757]
  13. Comput Math Methods Med. 2019 Aug 14;2019:4091464 [PMID: 31485257]
  14. Sci Rep. 2019 Sep 23;9(1):13678 [PMID: 31548590]
  15. Int J Mol Sci. 2020 Dec 15;21(24): [PMID: 33333774]
  16. Int J Pharm. 2021 May 1;600:120474 [PMID: 33737093]
  17. Int J Pharm. 2014 Nov 20;475(1-2):306-14 [PMID: 25194352]
  18. Eur J Pharm Sci. 2007 Dec;32(4-5):296-307 [PMID: 17920822]
  19. Nat Commun. 2019 Jun 21;10(1):2749 [PMID: 31227703]
  20. J Control Release. 2004 Mar 24;95(3):627-38 [PMID: 15023472]
  21. Pharmaceutics. 2021 Aug 09;13(8): [PMID: 34452189]
  22. An Acad Bras Cienc. 2015 Sep;87(3):1823-31 [PMID: 26375019]
  23. AAPS PharmSciTech. 2009;10(2):361-7 [PMID: 19333762]
  24. Pharmaceutics. 2019 Dec 10;11(12): [PMID: 31835628]
  25. Drug Dev Ind Pharm. 2010 Apr;36(4):490-6 [PMID: 19857161]
  26. Int J Pharm. 2018 Feb 15;537(1-2):9-21 [PMID: 29246439]
  27. Daru. 2011;19(6):433-9 [PMID: 23008689]
  28. Mol Pharm. 2014 Feb 3;11(2):531-44 [PMID: 24320221]
  29. Int J Pharm. 2016 Apr 11;502(1-2):70-9 [PMID: 26899977]
  30. Int J Pharm. 2009 May 21;373(1-2):174-8 [PMID: 19429303]
  31. J Control Release. 2001 Jan 29;70(1-2):157-67 [PMID: 11166416]
  32. Acta Pharm. 2007 Sep;57(3):315-32 [PMID: 17878111]
  33. P T. 2014 Sep;39(9):638-45 [PMID: 25210417]
  34. Pharm Dev Technol. 2019 Jan;24(1):63-69 [PMID: 29251521]
  35. Heliyon. 2017 Aug 30;3(8):e00390 [PMID: 28920092]
  36. Molecules. 2018 Aug 20;23(8): [PMID: 30127324]
  37. Drug Des Devel Ther. 2019 Dec 27;13:4413-4430 [PMID: 31920290]
  38. Int J Nanomedicine. 2011;6:521-33 [PMID: 21468355]
  39. Drug Deliv. 2021 Dec;28(1):1524-1538 [PMID: 34266360]
  40. Drug Des Devel Ther. 2016 Jan 05;10:117-28 [PMID: 26792979]
  41. Biomed Res Int. 2019 Apr 14;2019:2382563 [PMID: 31111044]
  42. AAPS PharmSciTech. 2017 Oct;18(7):2673-2682 [PMID: 28281209]
  43. Pak J Pharm Sci. 2010 Jan;23(1):103-7 [PMID: 20067875]
  44. Pharmaceutics. 2019 May 11;11(5): [PMID: 31083593]
  45. Pharmaceutics. 2020 Mar 11;12(3): [PMID: 32168767]
  46. Acta Pol Pharm. 2014 Mar-Apr;71(2):301-9 [PMID: 25272651]
  47. Drug Deliv. 2016 Jul;23(6):2026-34 [PMID: 27187792]
  48. J Control Release. 2005 Oct 3;107(2):215-28 [PMID: 16014318]
  49. Int J Pharm. 2014 Jul 1;468(1-2):272-82 [PMID: 24709220]
  50. AAPS PharmSciTech. 2010 Sep;11(3):1223-31 [PMID: 20683687]
  51. Drug Dev Ind Pharm. 2020 May 2;:1-24 [PMID: 32362194]
  52. J Control Release. 2000 Dec 3;69(3):421-33 [PMID: 11102682]
  53. Pharmaceutics. 2019 Nov 13;11(11): [PMID: 31766305]
  54. Pharm Dev Technol. 2019 Nov;24(9):1083-1094 [PMID: 31215307]
  55. Drug Deliv. 2016 Jul;23(6):2035-43 [PMID: 26406153]
  56. Oxid Med Cell Longev. 2021 Jan 25;2021:8844455 [PMID: 33564364]
  57. Pharmaceutics. 2020 Mar 13;12(3): [PMID: 32183144]
  58. Eur J Pharm Biopharm. 2007 May;66(2):227-43 [PMID: 17127045]
  59. Nanomaterials (Basel). 2020 Jan 12;10(1): [PMID: 31940900]
  60. AAPS PharmSciTech. 2009;10(1):69-76 [PMID: 19148761]
  61. Case Rep Psychiatry. 2020 Feb 15;2020:3419609 [PMID: 32148991]
  62. Scientifica (Cairo). 2016;2016:6401267 [PMID: 27293975]
  63. Pharmaceutics. 2019 Feb 17;11(2): [PMID: 30781585]
  64. Int J Pharm. 2014 Dec 30;477(1-2):47-56 [PMID: 25304092]
  65. Molecules. 2020 Mar 27;25(7): [PMID: 32230976]
  66. J Pharm Pharm Sci. 2006;9(3):339-58 [PMID: 17207417]
  67. Colloids Surf B Biointerfaces. 2013 May 1;105:158-66 [PMID: 23357739]
  68. Food Chem. 2015 May 1;174:270-8 [PMID: 25529680]
  69. Pharm Dev Technol. 2015 May;20(3):266-70 [PMID: 24266739]
  70. J Drug Target. 2011 Apr;19(3):189-96 [PMID: 20446805]
  71. Drug Metab Pharmacokinet. 2007 Jun;22(3):206-11 [PMID: 17603222]
  72. Drug Dev Ind Pharm. 2018 Jun;44(6):873-885 [PMID: 29254384]

Word Cloud

Created with Highcharts 10.0.0CZPNEgelformulationsbioavailabilityphaseviscositypermeationnasalPdrugClozapineapproachenhancementinvestigateddifferentoilClearsizesolubilizationreleaseusingPluronic®PF127PF68NE-basedgelsNGgelationtemperaturestrengthstabilityselectedNGsciliotoxicitytweendiagramenhancedoptimummucosaLimitedsolubilityhepaticfirst-passmetabolismmaincauseslowanti-schizophrenicobjectivestudydevelopvalidatenanoemulsionbasedintranasaladministrationSolubilityinitiallyoilssurfactantsco-surfactantspseudoternarydiagramsconstructedselectoptimizedratiosurfactantco-surfactanttransparentcharacterizedtermsdropletcapacitytransmissionelectronmicroscopycompatibilitystudiesSelectedNEsincorporatedbasescombinationtwothermosensitivepolymersF-127F-68spreadabilityMoreoverevaluatedmucoadhesivePeppermint80transcutolchosenpreparationowingmaximumpointsextrapolated80:transcutol1:1passeddispersibilitytestsdemonstratedglobule679935496 nmzetapotential-124-311 mV>90%incorporationN3N9oil:Smix1:72:7respectivelymixture20:2%w/wresultantexhibitedretentionsheepCiliotoxicityexaminationsdisplayedinflammationdamageliningepitheliumunderlyingcellsconclusionmaypromisingdosageformschizophreniatreatmentIntranasaldeliverynanoemulsion-basedgels:EmulsificationtimeEx-vivoNasalPseudoternaryTranscutol

Similar Articles

Cited By