Re-examination of species limits in section using advanced species delimitation methods and description of four new species.

F Sklenář, Ž Jurjević, J Houbraken, M Kolařík, M C Arendrup, K M Jørgensen, J P Z Siqueira, J Gené, T Yaguchi, C N Ezekiel, C Silva Pereira, V Hubka
Author Information
  1. F Sklenář: Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
  2. Ž Jurjević: EMSL Analytical, Cinnaminson, NJ, USA.
  3. J Houbraken: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands.
  4. M Kolařík: Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
  5. M C Arendrup: Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.
  6. K M Jørgensen: Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.
  7. J P Z Siqueira: Laboratório de Microbiologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil.
  8. J Gené: Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain.
  9. T Yaguchi: Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan.
  10. C N Ezekiel: Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
  11. C Silva Pereira: Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal.
  12. V Hubka: Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.

Abstract

Since the last revision in 2015, the taxonomy of section evolved rapidly along with the availability of new species delimitation techniques. This study aims to re-evaluate the species boundaries of section members using modern delimitation methods applied to an extended set of strains (n = 90) collected from various environments. The analysis used DNA sequences of three house-keeping genes (, , ) and consisted of two steps: application of several single-locus (GMYC, bGMYC, PTP, bPTP) and multi-locus (STACEY) species delimitation methods to sort the isolates into putative species, which were subsequently validated using DELINEATE software that was applied for the first time in fungal taxonomy. As a result, four new species are introduced, , , and , and is synonymized with . Phenotypic analyses were performed for the new species and their relatives, and the results showed that the growth parameters at different temperatures and colonies characteristics were useful for differentiation of these taxa. The revised section harbors 18 species, most of them are known from soil. However, the most common species from the section are ecologically diverse, occurring in the indoor environment (six species), clinical samples (five species), food and feed (four species), droppings (four species) and other less common substrates/environments. Due to the occurrence of section species in the clinical material/hospital environment, we also evaluated the susceptibility of 67 strains to six antifungals (amphotericin B, itraconazole, posaconazole, voriconazole, isavuconazole, terbinafine) using the reference EUCAST method. These results showed some potentially clinically relevant differences in susceptibility between species. For example, MICs higher than those observed for wild-type were found for both triazoles and amphotericin B for and whereas and were comparable to or more susceptible as . Finally, terbinafine was active against all species except .

Keywords

Associated Data

Dryad | 10.5061/dryad.dz08kprxj

References

  1. J Antibiot (Tokyo). 2019 Nov;72(11):843-847 [PMID: 31337867]
  2. Int J Syst Evol Microbiol. 2019 Sep;69(9):2899-2906 [PMID: 31274407]
  3. Syst Biol. 2016 May;65(3):478-94 [PMID: 26797695]
  4. Persoonia. 2018 Dec;41:142-174 [PMID: 30728603]
  5. Stud Mycol. 2016 Sep;85:199-213 [PMID: 28082760]
  6. Mycologia. 2008 Mar-Apr;100(2):205-26 [PMID: 18595197]
  7. Virus Res. 2019 Nov;273:197737 [PMID: 31479695]
  8. Pediatr Infect Dis. 1986 Mar-Apr;5(2):264-8 [PMID: 3456559]
  9. Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 [PMID: 27095192]
  10. J Clin Microbiol. 2014 Oct;52(10):3707-21 [PMID: 25100816]
  11. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1607-1612 [PMID: 28137871]
  12. PLoS Comput Biol. 2021 May 13;17(5):e1008924 [PMID: 33983918]
  13. Fungal Genet Biol. 2019 Oct;131:103249 [PMID: 31279976]
  14. J Hazard Mater. 2020 Mar 15;386:121954 [PMID: 31884363]
  15. Saudi J Biol Sci. 2021 Jan;28(1):73-77 [PMID: 33424285]
  16. Stud Mycol. 2017 Sep;88:37-135 [PMID: 28860671]
  17. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  18. Int J Syst Evol Microbiol. 2018 Apr;68(4):995-1011 [PMID: 29458472]
  19. Evolution. 2009 Jan;63(1):1-19 [PMID: 19146594]
  20. J Math Biol. 2017 Jan;74(1-2):447-467 [PMID: 27287395]
  21. J Nat Prod. 2014 Feb 28;77(2):193-9 [PMID: 24456525]
  22. Syst Biol. 2009 Aug;58(4):439-42; discussion 442-4 [PMID: 20525596]
  23. Lett Appl Microbiol. 2008 Oct;47(4):342-7 [PMID: 18840154]
  24. Fungal Genet Biol. 2000 Oct;31(1):21-32 [PMID: 11118132]
  25. Diagn Microbiol Infect Dis. 2003 Feb;45(2):131-5 [PMID: 12614985]
  26. Mol Biol Evol. 2008 Jul;25(7):1253-6 [PMID: 18397919]
  27. Mycologia. 2002 Jan-Feb;94(1):21-7 [PMID: 21156474]
  28. Microorganisms. 2021 Jan 06;9(1): [PMID: 33418970]
  29. Mycologia. 2015 Jan-Feb;107(1):169-208 [PMID: 25344259]
  30. Appl Environ Microbiol. 2000 May;66(5):1899-904 [PMID: 10788357]
  31. Persoonia. 2012 Dec;29:1-10 [PMID: 23606761]
  32. Med Mycol. 2019 Aug 1;57(6):773-780 [PMID: 30535052]
  33. Med Mycol. 2019 Nov 1;57(8):962-968 [PMID: 30690478]
  34. PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 [PMID: 24722319]
  35. Evolution. 2003 Dec;57(12):2703-20 [PMID: 14761051]
  36. J Vet Intern Med. 2008 Jul-Aug;22(4):851-9 [PMID: 18647155]
  37. RSC Adv. 2020 Jun 9;10(37):22058-22079 [PMID: 35516645]
  38. Mol Biol Rep. 2019 Jun;46(3):3451-3460 [PMID: 31012026]
  39. Mycoses. 2018 Nov;61(11):814-825 [PMID: 29938842]
  40. Appl Microbiol Biotechnol. 2015 Oct;99(19):7859-77 [PMID: 26243055]
  41. Stud Mycol. 2014 Jun;78:141-73 [PMID: 25492982]
  42. Food Microbiol. 2017 Oct;67:106-115 [PMID: 28648287]
  43. Appl Environ Microbiol. 1995 Apr;61(4):1323-30 [PMID: 7747954]
  44. Mycobiology. 2016 Dec;44(4):237-247 [PMID: 28154481]
  45. Can Med Assoc J. 1955 Mar 1;72(5):334-7 [PMID: 14352093]
  46. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  47. J Microbiol. 2019 Sep;57(9):717-724 [PMID: 31452042]
  48. Arch Intern Med. 1979 May;139(5):590-2 [PMID: 443955]
  49. Mar Drugs. 2011;9(4):561-585 [PMID: 21731550]
  50. Bioinformatics. 2010 Feb 1;26(3):419-20 [PMID: 20080509]
  51. Bioinformatics. 2013 Nov 15;29(22):2869-76 [PMID: 23990417]
  52. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  53. Mycologia. 2020 Mar-Apr;112(2):342-370 [PMID: 32074019]
  54. Syst Biol. 2013 Sep;62(5):707-24 [PMID: 23681854]
  55. J Clin Microbiol. 2014 Oct;52(10):3633-40 [PMID: 25078909]
  56. Mar Drugs. 2018 Nov 15;16(11): [PMID: 30445748]
  57. J Antimicrob Chemother. 2003 Sep;52(3):365-70 [PMID: 12917236]
  58. Stud Mycol. 2020 Jun 27;95:5-169 [PMID: 32855739]
  59. J Antimicrob Chemother. 2021 Jun 18;76(7):1793-1799 [PMID: 33734364]
  60. J Clin Microbiol. 2016 Sep;54(9):2354-64 [PMID: 27413188]
  61. Stud Mycol. 2014 Jun;78:63-139 [PMID: 25492981]
  62. Stud Mycol. 2017 Sep;88:161-236 [PMID: 29158611]
  63. Mol Biol Evol. 2010 Mar;27(3):570-80 [PMID: 19906793]
  64. Int J Food Microbiol. 2020 Feb 2;314:108389 [PMID: 31683087]
  65. Mol Phylogenet Evol. 1997 Feb;7(1):103-16 [PMID: 9007025]
  66. Folia Microbiol (Praha). 2018 Jan;63(1):43-55 [PMID: 28551852]
  67. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  68. Mol Biol Evol. 1999 Dec;16(12):1799-808 [PMID: 10605121]
  69. Int J Syst Evol Microbiol. 2006 Feb;56(Pt 2):477-486 [PMID: 16449461]
  70. Nihon Kokyuki Gakkai Zasshi. 1999 Nov;37(11):938-42 [PMID: 18217319]
  71. BMC Evol Biol. 2012 Oct 02;12:196 [PMID: 23031350]
  72. Stud Mycol. 2007;59:1-10 [PMID: 18490947]