Electrorheological Fluids of GO/Graphene-Based Nanoplates.

Yudong Wang, Jinhua Yuan, Xiaopeng Zhao, Jianbo Yin
Author Information
  1. Yudong Wang: Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
  2. Jinhua Yuan: Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
  3. Xiaopeng Zhao: Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
  4. Jianbo Yin: Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China. ORCID

Abstract

Due to their unique anisotropic morphology and properties, graphene-based materials have received extensive attention in the field of smart materials. Recent studies show that graphene-based materials have potential application as a dispersed phase to develop high-performance electrorheological (ER) fluids, a kind of smart suspension whose viscosity and viscoelastic properties can be adjusted by external electric fields. However, pure graphene is not suitable for use as the dispersed phase of ER fluids due to the electric short circuit caused by its high electrical conductivity under electric fields. However, graphene oxide (GO) and graphene-based composites are suitable for use as the dispersed phase of ER fluids and show significantly enhanced property. In this review, we look critically at the latest developments of ER fluids based on GO and graphene-based composites, including their preparation, electrically tunable ER property, and dispersed stability. The mechanism behind enhanced ER property is discussed according to dielectric spectrum analysis. Finally, we also propose the remaining challenges and possible developments for the future outlook in this field.

Keywords

References

  1. J Colloid Interface Sci. 2016 May 15;470:237-244 [PMID: 26950396]
  2. J Colloid Interface Sci. 2006 May 15;297(2):618-24 [PMID: 16337644]
  3. Nanotechnology. 2008 Apr 23;19(16):165602 [PMID: 21825646]
  4. Soft Robot. 2018 Jun;5(3):258-271 [PMID: 29608429]
  5. Polymers (Basel). 2020 Aug 31;12(9): [PMID: 32878240]
  6. J Colloid Interface Sci. 1997 Jun 15;190(2):334-40 [PMID: 9241175]
  7. J Phys Chem B. 2018 Dec 20;122(50):12184-12193 [PMID: 30457870]
  8. Langmuir. 2012 May 1;28(17):7055-62 [PMID: 22486527]
  9. ACS Appl Mater Interfaces. 2012 Apr;4(4):2267-72 [PMID: 22476845]
  10. IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):91-8 [PMID: 18303810]
  11. Nanomaterials (Basel). 2019 Feb 24;9(2): [PMID: 30813501]
  12. Soft Matter. 2014 Sep 21;10(35):6601-8 [PMID: 25068905]
  13. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Aug;52(2):1669-1693 [PMID: 9963586]
  14. Chem Commun (Camb). 2011 Dec 7;47(45):12286-8 [PMID: 22010134]
  15. Nano Lett. 2008 Mar;8(3):902-7 [PMID: 18284217]
  16. ACS Nano. 2010 Aug 24;4(8):4806-14 [PMID: 20731455]
  17. ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22855-61 [PMID: 25434588]
  18. Nanotechnology. 2016 May 13;27(19):195702 [PMID: 27041243]
  19. Nat Mater. 2010 Oct;9(10):840-5 [PMID: 20852618]
  20. Polymers (Basel). 2020 Oct 29;12(11): [PMID: 33138140]
  21. Nature. 2005 Nov 10;438(7065):201-4 [PMID: 16281031]
  22. ACS Nano. 2012 Sep 25;6(9):8357-65 [PMID: 22861527]
  23. ACS Nano. 2013 Aug 27;7(8):6735-46 [PMID: 23829596]
  24. ACS Nano. 2017 Oct 24;11(10):9789-9801 [PMID: 28960964]
  25. Nanotechnology. 2017 Jan 20;28(3):035702 [PMID: 27928997]
  26. Polymers (Basel). 2020 Mar 22;12(3): [PMID: 32235757]
  27. Nanomaterials (Basel). 2020 Mar 24;10(3): [PMID: 32213907]
  28. J Phys Chem B. 2020 Apr 9;124(14):2920-2929 [PMID: 32182069]
  29. RSC Adv. 2019 Jan 9;9(3):1187-1198 [PMID: 35517996]
  30. ACS Appl Mater Interfaces. 2010 Mar;2(3):621-5 [PMID: 20356258]
  31. Nanotechnology. 2009 Feb 4;20(5):055604 [PMID: 19417351]
  32. Science. 1992 Oct 30;258(5083):761-6 [PMID: 17777027]
  33. Nature. 2004 Feb 5;427(6974):521-3 [PMID: 14765189]
  34. Nat Mater. 2003 Nov;2(11):727-30 [PMID: 14528296]
  35. Macromol Rapid Commun. 2019 Sep;40(17):e1800351 [PMID: 30085361]
  36. Nano Lett. 2010 Sep 8;10(9):3486-9 [PMID: 20677793]
  37. Science. 2008 Jul 18;321(5887):385-8 [PMID: 18635798]
  38. ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46490-46500 [PMID: 32938182]
  39. Materials (Basel). 2019 Jul 07;12(13): [PMID: 31284695]

Grants

  1. 51872243/National Natural Science Foundation of China
  2. JCYJ20190806153009355/Science and Technology Planning Project of Shenzhen Municipality

Word Cloud

Created with Highcharts 10.0.0ERpropertiesgraphene-baseddispersedfluidsmaterialsphaseelectricpropertyfieldsmartshowfieldsHowevergraphenesuitableuseGOcompositesenhanceddevelopmentsdielectricDueuniqueanisotropicmorphologyreceivedextensiveattentionRecentstudiespotentialapplicationdevelophigh-performanceelectrorheologicalkindsuspensionwhoseviscosityviscoelasticcanadjustedexternalpuredueshortcircuitcausedhighelectricalconductivityoxidesignificantlyreviewlookcriticallylatestbasedincludingpreparationelectricallytunablestabilitymechanismbehinddiscussedaccordingspectrumanalysisFinallyalsoproposeremainingchallengespossiblefutureoutlookElectrorheologicalFluidsGO/Graphene-BasedNanoplatesgraphene/GOnanoplaterheological

Similar Articles

Cited By