Relationships between Intensity and Liking for Chemosensory Stimuli in Food Models: A Large-Scale Consumer Segmentation.

Isabella Endrizzi, Danny Cliceri, Leonardo Menghi, Eugenio Aprea, Mathilde Charles, Erminio Monteleone, Caterina Dinnella, Sara Spinelli, Ella Pagliarini, Monica Laureati, Luisa Torri, Alessandra Bendini, Tullia Gallina Toschi, Fiorella Sinesio, Stefano Predieri, Flavia Gasperi
Author Information
  1. Isabella Endrizzi: Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy. ORCID
  2. Danny Cliceri: Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy. ORCID
  3. Leonardo Menghi: Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy.
  4. Eugenio Aprea: Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy. ORCID
  5. Mathilde Charles: Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy.
  6. Erminio Monteleone: Department of Agricultural, Food, Environment and Forestry (DAGRI), University of Florence, Via Donizetti 6, 50144 Florence, Italy. ORCID
  7. Caterina Dinnella: Department of Agricultural, Food, Environment and Forestry (DAGRI), University of Florence, Via Donizetti 6, 50144 Florence, Italy. ORCID
  8. Sara Spinelli: Department of Agricultural, Food, Environment and Forestry (DAGRI), University of Florence, Via Donizetti 6, 50144 Florence, Italy. ORCID
  9. Ella Pagliarini: Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy. ORCID
  10. Monica Laureati: Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy.
  11. Luisa Torri: University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Italy. ORCID
  12. Alessandra Bendini: Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy. ORCID
  13. Tullia Gallina Toschi: Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy. ORCID
  14. Fiorella Sinesio: CREA, Council for Agricultural Research and Economics, Research Center Food & Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
  15. Stefano Predieri: Institute for Bioeconomy, CNR, National Research Council, Via Gobetti 101, 40129 Bologna, Italy. ORCID
  16. Flavia Gasperi: Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy. ORCID

Abstract

This study, which was conducted as part of the Italian Taste project, was aimed at exploring the relationship between actual liking and sensory perception in four food models. Each food model was spiked with four levels of prototypical tastant (i.e., citric acid, sucrose, sodium chloride, capsaicin) to elicit a target sensation (TS) at an increasing perceived intensity. Participants (N = 2258; 59% women, aged 18-60) provided demographic information, a stated liking for 40 different foods/beverages, and their responsiveness to tastants in water. A food-specific Pearson's coefficient was calculated individually to estimate the relationship between actual liking and TS responsiveness. Considering the relationship magnitude, consumers were grouped into four food-specific clusters, depending on whether they showed a strong negative (SNC), a weak negative (WNC), a weak positive (WPC), or a strong positive correlation (SPC). Overall, the degree of liking raised in parallel with sweetness responsiveness, fell as sourness and pungency perception increased, and showed an inverted U-shape relationship with saltiness. The SNC clusters generally perceived TSs at higher intensities, except for sourness. Clusters were validated by associating the level of stated liking towards food/beverages; however, some unexpected indications emerged: adding sugar to coffee or preferring spicy foods differentiated those presenting positive correlations from those showing negative correlations. Our findings constitute a step towards a more comprehensive understanding of food preferences.

Keywords

References

  1. Annu Rev Nutr. 2008;28:367-88 [PMID: 18407743]
  2. Physiol Behav. 1992 Jul;52(1):75-82 [PMID: 1529017]
  3. Foods. 2019 Sep 27;8(10): [PMID: 31569738]
  4. Comput Methods Programs Biomed. 1991 May;35(1):43-51 [PMID: 1879135]
  5. Psychol Bull. 1981 Jul;90(1):43-73 [PMID: 7267897]
  6. Food Qual Prefer. 2018 Apr;65:175-180 [PMID: 31320785]
  7. Chem Senses. 2019 Jan 29;44(2):129-134 [PMID: 30590512]
  8. Physiol Behav. 2004 Sep 15;82(2-3):459-69 [PMID: 15276811]
  9. Chem Senses. 2007 Mar;32(3):225-36 [PMID: 17204520]
  10. Chem Senses. 2000 Aug;25(4):447-60 [PMID: 10944509]
  11. Q J Exp Psychol (Hove). 2009 Aug;62(8):1648-64 [PMID: 19180363]
  12. Physiol Behav. 1997 Sep;62(3):649-55 [PMID: 9272678]
  13. Science. 1974 May 3;184(4136):583-5 [PMID: 4821960]
  14. Alcohol Clin Exp Res. 2004 Nov;28(11):1629-37 [PMID: 15547448]
  15. Psychol Rev. 1960 Jul;67:253-68 [PMID: 14432499]
  16. Nutrients. 2021 Mar 06;13(3): [PMID: 33800789]
  17. Physiol Behav. 1999 Oct;67(4):513-20 [PMID: 10549887]
  18. Foods. 2020 Oct 09;9(10): [PMID: 33050242]
  19. Chem Senses. 2018 Nov 1;43(9):697-710 [PMID: 30204849]
  20. Physiol Behav. 1996 Sep;60(3):953-8 [PMID: 8873274]
  21. Physiol Behav. 2004 Aug;82(1):109-14 [PMID: 15234598]
  22. Appetite. 2014 Apr;75:1-10 [PMID: 24361469]
  23. Chem Senses. 2003 Jun;28(5):397-413 [PMID: 12826536]
  24. Food Qual Prefer. 2014 Sep 1;36:27-32 [PMID: 25024507]
  25. Neurosci Biobehav Rev. 2009 Jan;33(1):1-17 [PMID: 18708089]
  26. J Am Diet Assoc. 1996 May;96(5):471-4 [PMID: 8621872]
  27. Psychol Res. 1980;42(1-2):165-74 [PMID: 7394125]
  28. Physiol Behav. 2008 Sep 3;95(1-2):77-87 [PMID: 18538361]
  29. Nutrients. 2019 Jan 10;11(1): [PMID: 30634558]
  30. Physiol Behav. 2007 Jun 8;91(2-3):264-73 [PMID: 17477942]
  31. Science. 1975 Dec 19;190(4220):1217-8 [PMID: 1198109]
  32. Physiol Behav. 1988;43(5):601-7 [PMID: 3200915]
  33. Food Res Int. 2017 Oct;100(Pt 1):325-334 [PMID: 28873694]
  34. Food Res Int. 2016 Dec;90:91-99 [PMID: 29195896]
  35. Physiol Behav. 2015 Jan;138:219-26 [PMID: 25446205]
  36. Physiol Behav. 2010 Jun 16;100(4):369-80 [PMID: 20380843]
  37. Nutr Cancer. 1999;34(1):70-5 [PMID: 10453444]
  38. Chem Senses. 2020 May 29;45(5):383-390 [PMID: 32382729]
  39. Appetite. 1988 Oct;11(2):81-95 [PMID: 3239966]
  40. Appetite. 2006 Jan;46(1):93-6 [PMID: 16360976]
  41. Arq Bras Cardiol. 2019 Aug 29;113(3):392-399 [PMID: 31482947]
  42. Physiol Behav. 1979 May;22(5):999-1003 [PMID: 504405]
  43. Lancet. 2011 Aug 27;378(9793):804-14 [PMID: 21872749]
  44. Appetite. 1984 Sep;5(3):187-97 [PMID: 6524915]
  45. Int J Obes (Lond). 2012 Oct;36(10):1285-91 [PMID: 22546773]
  46. Nutrients. 2021 Jan 19;13(1): [PMID: 33478028]
  47. Chem Senses. 2000 Jun;25(3):239-46 [PMID: 10866983]

Word Cloud

Created with Highcharts 10.0.0likingrelationshipactualfourfoodperceivedstatedresponsivenessnegativepositiveperceptionTSintensityfood-specificclustersshowedstrongSNCweaksournesspungencytowardscorrelationsstudyconductedpartItalianTasteprojectaimedexploringsensorymodelsmodelspikedlevelsprototypicaltastantiecitricacidsucrosesodiumchloridecapsaicinelicittargetsensationincreasingParticipantsN=225859%womenaged18-60provideddemographicinformation40differentfoods/beveragestastantswaterPearson'scoefficientcalculatedindividuallyestimateConsideringmagnitudeconsumersgroupeddependingwhetherWNCWPCcorrelationSPCOveralldegreeraisedparallelsweetnessfellincreasedinvertedU-shapesaltinessgenerallyTSshigherintensitiesexceptClustersvalidatedassociatinglevelfood/beverageshoweverunexpectedindicationsemerged:addingsugarcoffeepreferringspicyfoodsdifferentiatedpresentingshowingfindingsconstitutestepcomprehensiveunderstandingpreferencesRelationshipsIntensityLikingChemosensoryStimuliFoodModels:Large-ScaleConsumerSegmentationconsumersegmentationtastes

Similar Articles

Cited By