Predicting the mutational drivers of future SARS-CoV-2 variants of concern.

M Cyrus Maher, Istvan Bartha, Steven Weaver, Julia di Iulio, Elena Ferri, Leah Soriaga, Florian A Lempp, Brian L Hie, Bryan Bryson, Bonnie Berger, David L Robertson, Gyorgy Snell, Davide Corti, Herbert W Virgin, Sergei L Kosakovsky Pond, Amalio Telenti
Author Information
  1. M Cyrus Maher: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  2. Istvan Bartha: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  3. Steven Weaver: Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA. ORCID
  4. Julia di Iulio: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  5. Elena Ferri: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  6. Leah Soriaga: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  7. Florian A Lempp: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  8. Brian L Hie: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ORCID
  9. Bryan Bryson: Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA. ORCID
  10. Bonnie Berger: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ORCID
  11. David L Robertson: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow GS1 1QH, UK. ORCID
  12. Gyorgy Snell: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  13. Davide Corti: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  14. Herbert W Virgin: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID
  15. Sergei L Kosakovsky Pond: Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA. ORCID
  16. Amalio Telenti: Vir Biotechnology, San Francisco, CA 94158, USA. ORCID

Abstract

SARS-CoV-2 evolution threatens vaccine- and natural infection-derived immunity as well as the efficacy of therapeutic antibodies. To improve public health preparedness, we sought to predict which existing amino acid mutations in SARS-CoV-2 might contribute to future variants of concern. We tested the predictive value of features comprising epidemiology, evolution, immunology, and neural network-based protein sequence modeling, and identified primary biological drivers of SARS-CoV-2 intra-pandemic evolution. We found evidence that ACE2-mediated transmissibility and resistance to population-level host immunity has waxed and waned as a primary driver of SARS-CoV-2 evolution over time. We retroactively identified with high accuracy (area under the receiver operator characteristic curve, AUROC=0.92-0.97) mutations that will spread, at up to four months in advance, across different phases of the pandemic. The behavior of the model was consistent with a plausible causal structure wherein epidemiological covariates combine the effects of diverse and shifting drivers of viral fitness. We applied our model to forecast mutations that will spread in the future and characterize how these mutations affect the binding of therapeutic antibodies. These findings demonstrate that it is possible to forecast the driver mutations that could appear in emerging SARS-CoV-2 variants of concern. We validate this result against Omicron, showing elevated predictive scores for its component mutations prior to emergence, and rapid score increase across daily forecasts during emergence. This modeling approach may be applied to any rapidly evolving pathogens with sufficiently dense genomic surveillance data, such as influenza, and unknown future pandemic viruses.

References

  1. Cell. 2021 May 27;184(11):2939-2954.e9 [PMID: 33852911]
  2. Sci Immunol. 2021 Mar 4;6(57): [PMID: 33664060]
  3. PLoS Pathog. 2021 Apr 7;17(4):e1009499 [PMID: 33826681]
  4. Cell Discov. 2021 May 4;7(1):31 [PMID: 33947832]
  5. PLoS One. 2021 Apr 14;16(4):e0250110 [PMID: 33852642]
  6. Cell Rep Med. 2021 Jul 20;2(7):100355 [PMID: 34230917]
  7. Biochem Biophys Res Commun. 2021 Jan 1;534:374-380 [PMID: 33272568]
  8. Cell Host Microbe. 2021 Mar 10;29(3):463-476.e6 [PMID: 33592168]
  9. Nucleic Acids Res. 2020 Dec 16;48(22):12436-12452 [PMID: 33166999]
  10. Cell Host Microbe. 2021 Jan 13;29(1):44-57.e9 [PMID: 33259788]
  11. Int J Epidemiol. 2016 Dec 1;45(6):1895-1903 [PMID: 28204514]
  12. Adv Med Sci. 2021 Sep;66(2):237-245 [PMID: 33827042]
  13. Glob Chall. 2017 Jan 10;1(1):33-46 [PMID: 31565258]
  14. Nature. 2021 May;593(7857):136-141 [PMID: 33706364]
  15. Cell. 2021 Apr 29;184(9):2332-2347.e16 [PMID: 33761326]
  16. Science. 2021 Feb 19;371(6531):850-854 [PMID: 33495308]
  17. New Microbes New Infect. 2021 May;41:100877 [PMID: 33846689]
  18. Science. 2021 Jan 15;371(6526):284-288 [PMID: 33446556]
  19. Nature. 2020 Sep;585(7825):357-362 [PMID: 32939066]
  20. Mol Biol Evol. 2020 Jan 1;37(1):295-299 [PMID: 31504749]
  21. Mol Biol Evol. 2005 May;22(5):1208-22 [PMID: 15703242]
  22. Nature. 2021 Sep;597(7874):97-102 [PMID: 34261126]
  23. Curr Top Med Chem. 2008;8(18):1555-72 [PMID: 19075767]
  24. Science. 2021 May 21;372(6544):815-821 [PMID: 33853970]
  25. Cell Rep. 2020 Sep 22;32(12):108185 [PMID: 32941788]
  26. Cell. 2020 Sep 3;182(5):1295-1310.e20 [PMID: 32841599]
  27. Cell. 2021 Sep 30;184(20):5189-5200.e7 [PMID: 34537136]
  28. Cell Rep Med. 2021 Apr 20;2(4):100255 [PMID: 33842902]
  29. PLoS Genet. 2012;8(7):e1002764 [PMID: 22807683]
  30. Bioinformatics. 2005 Mar 1;21(5):676-9 [PMID: 15509596]
  31. Cell Rep Med. 2021 Feb 16;2(2):100204 [PMID: 33521695]
  32. Lancet Infect Dis. 2017 Oct;17(10):e320-e326 [PMID: 28457597]

Grants

  1. MC_PC_19026/Medical Research Council
  2. R01 AI134384/NIAID NIH HHS
  3. MC_UU_12014/12/Medical Research Council

MeSH Term

COVID-19
Humans
Mutation
Pandemics
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2mutationsevolutionfuturevariantsconcerndriversimmunitytherapeuticantibodiespredictivemodelingidentifiedprimarydriverwillspreadacrosspandemicmodelappliedforecastemergencethreatensvaccine-naturalinfection-derivedwellefficacyimprovepublichealthpreparednesssoughtpredictexistingaminoacidmightcontributetestedvaluefeaturescomprisingepidemiologyimmunologyneuralnetwork-basedproteinsequencebiologicalintra-pandemicfoundevidenceACE2-mediatedtransmissibilityresistancepopulation-levelhostwaxedwanedtimeretroactivelyhighaccuracyareareceiveroperatorcharacteristiccurveAUROC=092-097fourmonthsadvancedifferentphasesbehaviorconsistentplausiblecausalstructurewhereinepidemiologicalcovariatescombineeffectsdiverseshiftingviralfitnesscharacterizeaffectbindingfindingsdemonstratepossibleappearemergingvalidateresultOmicronshowingelevatedscorescomponentpriorrapidscoreincreasedailyforecastsapproachmayrapidlyevolvingpathogenssufficientlydensegenomicsurveillancedatainfluenzaunknownvirusesPredictingmutational

Similar Articles

Cited By