Conceptual Exchanges for Understanding Free-Living and Host-Associated Microbiomes.

Catherine A Pfister, Samuel H Light, Brendan Bohannan, Thomas Schmidt, Adam Martiny, Nicole A Hynson, Suzanne Devkota, Lawrence David, Katrine Whiteson
Author Information
  1. Catherine A Pfister: Department of Ecology & Evolution and The Microbiome Center, University of Chicago, Chicago, Illinois, USA. ORCID
  2. Samuel H Light: Department of Microbiology & Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA. ORCID
  3. Brendan Bohannan: Environmental Studies and Biology, University of Oregongrid.170202.6, Eugene, Oregon, USA. ORCID
  4. Thomas Schmidt: Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA. ORCID
  5. Adam Martiny: Earth System Science & Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA. ORCID
  6. Nicole A Hynson: Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA. ORCID
  7. Suzanne Devkota: Microbiome Research, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Centergrid.50956.3f, Los Angeles, California, USA. ORCID
  8. Lawrence David: Molecular Genetics & Microbiology, Duke Universitygrid.26009.3d, Durham, North Carolina, USA. ORCID
  9. Katrine Whiteson: Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA. ORCID

Abstract

Whether a microbe is free-living or associated with a host from across the tree of life, its existence depends on a limited number of elements and electron donors and acceptors. Yet divergent approaches have been used by investigators from different fields. The "environment first" research tradition emphasizes thermodynamics and biogeochemical principles, including the quantification of redox environments and elemental stoichiometry to identify transformations and thus an underlying microbe. The increasingly common "microbe first" research approach benefits from culturing and/or DNA sequencing methods to first identify a microbe and encoded metabolic functions. Here, the microbe itself serves as an indicator for environmental conditions and transformations. We illustrate the application of both approaches to the study of microbiomes and emphasize how both can reveal the selection of microbial metabolisms across diverse environments, anticipate alterations to microbiomes in host health, and understand the implications of a changing climate for microbial function.

Keywords

References

  1. J Bacteriol. 2019 Mar 13;201(7): [PMID: 30642989]
  2. mBio. 2015 May 19;6(3):e00381-15 [PMID: 25991682]
  3. Nature. 2017 Nov 23;551(7681):457-463 [PMID: 29088705]
  4. ISME J. 2012 Aug;6(8):1578-85 [PMID: 22357539]
  5. Cell. 2014 Sep 11;158(6):1402-1414 [PMID: 25215495]
  6. Am J Respir Crit Care Med. 2014 Jun 1;189(11):1309-15 [PMID: 24702670]
  7. Nature. 2017 Oct 5;550(7674):61-66 [PMID: 28953883]
  8. mBio. 2015 Jul 28;6(4):e00767 [PMID: 26220964]
  9. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20025-20032 [PMID: 31527278]
  10. Appl Environ Microbiol. 2007 Oct;73(19):6289-95 [PMID: 17704276]
  11. PLoS One. 2007 Oct 10;2(10):e1028 [PMID: 17925876]
  12. Mikrobiologiia. 2006 Sep-Oct;75(5):581-92 [PMID: 17091583]
  13. Nat Rev Microbiol. 2012 Jul 16;10(8):525-37 [PMID: 22796883]
  14. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4381-6 [PMID: 25713351]
  15. Adv Exp Med Biol. 2019;1125:25-36 [PMID: 30680646]
  16. J Clin Invest. 2010 Dec;120(12):4332-41 [PMID: 21099116]
  17. Nature. 2019 May;569(7758):623-625 [PMID: 31142863]
  18. ISME J. 2019 Aug;13(8):2125-2128 [PMID: 30952994]
  19. Nature. 2016 May 04;533(7604):543-546 [PMID: 27144353]
  20. J Bacteriol. 2018 Aug 10;200(17): [PMID: 29891640]
  21. Nat Rev Microbiol. 2008 Apr;6(4):320-6 [PMID: 18340342]
  22. Science. 1987 Feb 6;235(4789):689-91 [PMID: 17833630]
  23. Genome Med. 2016 Jul 01;8(1):72 [PMID: 27363992]
  24. Elife. 2018 Jun 19;7: [PMID: 29916366]
  25. ISME J. 2015 Oct;9(10):2324-7 [PMID: 25798755]
  26. Cancers (Basel). 2019 Jan 03;11(1): [PMID: 30609850]
  27. Nature. 2010 Sep 23;467(7314):426-9 [PMID: 20864996]
  28. Mucosal Immunol. 2018 Sep;11(5):1299-1305 [PMID: 29743614]
  29. Nature. 2012 Jul 5;487(7405):104-8 [PMID: 22722865]
  30. Biol Bull. 1969 Dec;137(3):506-523 [PMID: 28368714]
  31. Science. 1988 Jun 3;240(4857):1319-21 [PMID: 17815852]
  32. Nature. 2019 May;569(7758):655-662 [PMID: 31142855]
  33. Nature. 2013 Jul 25;499(7459):431-7 [PMID: 23851394]
  34. Eur J Biochem. 1973 Jul 16;36(2):411-21 [PMID: 4730962]
  35. Nature. 2018 Oct;562(7725):140-144 [PMID: 30209391]
  36. Sci Adv. 2018 Jan 24;4(1):eaao5747 [PMID: 29387792]
  37. Curr Opin Microbiol. 2018 Aug;44:20-27 [PMID: 30007202]
  38. Nat Microbiol. 2018 Dec;3(12):1441-1450 [PMID: 30374168]
  39. Microbiol Mol Biol Rev. 2012 Sep;76(3):585-96 [PMID: 22933561]
  40. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3171-3176 [PMID: 30718429]
  41. Science. 2008 May 23;320(5879):1034-9 [PMID: 18497287]
  42. Nat Microbiol. 2017 Feb 13;2:17004 [PMID: 28191884]
  43. Science. 2013 Feb 8;339(6120):708-11 [PMID: 23393266]
  44. Nature. 2014 Jun 5;510(7503):139-42 [PMID: 24805231]
  45. Nat Microbiol. 2020 Jan;5(1):2-3 [PMID: 31857734]
  46. Biochem Biophys Res Commun. 2008 Oct 17;375(2):241-6 [PMID: 18706891]
  47. Front Cell Infect Microbiol. 2013 Nov 19;3:80 [PMID: 24312900]
  48. Trends Ecol Evol. 2011 Jan;26(1):38-44 [PMID: 21093095]
  49. PLoS Biol. 2018 Aug 7;16(8):e2006352 [PMID: 30086128]
  50. Trends Mol Med. 2019 Dec;25(12):1110-1122 [PMID: 31439509]
  51. Mar Biol. 2008;153(6):1257-1264 [PMID: 24391232]
  52. Z Allg Mikrobiol. 1977;17(6):491-3 [PMID: 930125]
  53. Front Microbiol. 2017 Jul 18;8:1119 [PMID: 28769875]
  54. Cell Rep. 2020 Mar 24;30(12):4003-4015.e3 [PMID: 32209464]
  55. PLoS One. 2014 Jan 17;9(1):e84353 [PMID: 24465406]
  56. Gut Microbes. 2016;7(1):58-62 [PMID: 26939853]
  57. Nature. 2015 Oct 29;526(7575):631-4 [PMID: 26511562]
  58. Nature. 2016 Jul 06;535(7610):48-55 [PMID: 27383979]
  59. Appl Environ Microbiol. 1988 Jun;54(6):1472-80 [PMID: 16347658]
  60. Ann Rev Mar Sci. 2018 Jan 3;10:43-69 [PMID: 28853998]
  61. Cell. 2019 Jan 24;176(3):649-662.e20 [PMID: 30661755]
  62. Proc Natl Acad Sci U S A. 2005 May 3;102(18):6478-83 [PMID: 15843458]
  63. mBio. 2014 Mar 18;5(2):e00956-13 [PMID: 24643867]
  64. Nat Microbiol. 2018 Sep;3(9):989-995 [PMID: 30061756]
  65. Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7990-7999 [PMID: 30833394]
  66. Microbiome. 2020 Jun 30;8(1):103 [PMID: 32605663]
  67. Nature. 2010 May 20;465(7296):355-8 [PMID: 20436458]
  68. Nat Rev Cancer. 2013 Nov;13(11):800-12 [PMID: 24132111]
  69. Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130120 [PMID: 23713118]
  70. New Phytol. 2010 Sep;187(4):1135-1145 [PMID: 20553396]
  71. J R Soc Interface. 2017 Mar;14(128): [PMID: 28330986]
  72. mBio. 2019 Aug 13;10(4): [PMID: 31409683]
  73. Nat Rev Microbiol. 2013 Mar;11(3):205-12 [PMID: 23411864]
  74. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  75. Gut Microbes. 2017 Sep 3;8(5):493-503 [PMID: 28418756]
  76. Elife. 2020 Feb 18;9: [PMID: 32067637]
  77. ISME J. 2015 Mar 17;9(4):1024-38 [PMID: 25514533]
  78. J Hyg (Lond). 1927 Nov;27(1):70-102 [PMID: 20474955]
  79. mBio. 2019 Oct 1;10(5): [PMID: 31575762]
  80. Nature. 2005 Nov 3;438(7064):90-3 [PMID: 16267554]
  81. Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1879-84 [PMID: 24449851]
  82. Science. 2004 Sep 3;305(5689):1457-62 [PMID: 15353801]
  83. Science. 2018 Mar 9;359(6380):1151-1156 [PMID: 29590046]
  84. Br J Cancer. 2016 Feb 2;114(3):237-42 [PMID: 26730578]

Grants

  1. P01 GM125576/NIGMS NIH HHS
  2. R01 DK116187/NIDDK NIH HHS
  3. R13 CA250289/NCI NIH HHS

MeSH Term

Microbiota

Word Cloud

Created with Highcharts 10.0.0microbemicrobialhostacrossapproachesfirst"researchredoxenvironmentsstoichiometryidentifytransformationsmicrobiomesmetabolismsWhetherfree-livingassociatedtreelifeexistencedependslimitednumberelementselectrondonorsacceptorsYetdivergentusedinvestigatorsdifferentfields"environmenttraditionemphasizesthermodynamicsbiogeochemicalprinciplesincludingquantificationelementalthusunderlyingincreasinglycommon"microbeapproachbenefitsculturingand/orDNAsequencingmethodsfirstencodedmetabolicfunctionsservesindicatorenvironmentalconditionsillustrateapplicationstudyemphasizecanrevealselectiondiverseanticipatealterationshealthunderstandimplicationschangingclimatefunctionConceptualExchangesUnderstandingFree-LivingHost-AssociatedMicrobiomesbiogeochemistryhost-microbiomemicrobiomeoxidationstate

Similar Articles

Cited By (3)