Clinical impact of glycans in platelet and megakaryocyte biology.

Hervé Falet, Leonardo Rivadeneyra, Karin M Hoffmeister
Author Information
  1. Hervé Falet: Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI; and. ORCID
  2. Leonardo Rivadeneyra: Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI; and. ORCID
  3. Karin M Hoffmeister: Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI; and. ORCID

Abstract

Humans produce and remove 1011 platelets daily to maintain a steady-state platelet count. The tight regulation of platelet production and removal from the blood circulation prevents anomalies in both processes from resulting in reduced or increased platelet count, often associated with the risk of bleeding or overt thrombus formation, respectively. This review focuses on the role of glycans, also known as carbohydrates or oligosaccharides, including N- and O-glycans, proteoglycans, and glycosaminoglycans, in human and mouse platelet and megakaryocyte physiology. Based on recent clinical observations and mouse models, we focused on the pathologic aspects of glycan biosynthesis and degradation and their effects on platelet numbers and megakaryocyte function.

References

  1. PLoS Med. 2006 Jul;3(7):e270 [PMID: 16834459]
  2. Blood. 2004 Jun 1;103(11):4198-200 [PMID: 14764528]
  3. Drug Discov Today. 2010 Dec;15(23-24):1058-69 [PMID: 20974281]
  4. Hepatology. 2021 Jul;74(1):411-427 [PMID: 33369745]
  5. Blood. 2018 Aug 9;132(6):622-634 [PMID: 29794068]
  6. Trends Mol Med. 2008 Aug;14(8):351-60 [PMID: 18606570]
  7. Haematologica. 2016 Oct;101(10):1170-1179 [PMID: 27479822]
  8. Haematologica. 2014 Apr;99(4):e61-3 [PMID: 24532041]
  9. Lancet. 2005 Mar 19-25;365(9464):1054-61 [PMID: 15781101]
  10. Pathophysiol Haemost Thromb. 2006;35(1-2):46-9 [PMID: 16855346]
  11. J Biol Chem. 1996 Feb 9;271(6):3255-64 [PMID: 8621728]
  12. Blood. 2018 Oct 25;132(17):1855-1858 [PMID: 29941673]
  13. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16442-7 [PMID: 17062753]
  14. Nature. 2005 Apr 28;434(7037):1144-8 [PMID: 15793561]
  15. J Am Heart Assoc. 2021 Feb 16;10(4):e018756 [PMID: 33554615]
  16. Cardiovasc Res. 2015 Aug 1;107(3):331-9 [PMID: 25994174]
  17. Lab Invest. 1975 Apr;32(4):476-84 [PMID: 1127870]
  18. Thromb Res. 1985 Nov 15;40(4):465-71 [PMID: 4082119]
  19. J Thromb Haemost. 2020 Jul;18(7):1535-1547 [PMID: 32350996]
  20. J Biomed Mater Res A. 2011 Mar 15;96(4):682-92 [PMID: 21268241]
  21. Dev Cell. 2018 Mar 12;44(5):634-641.e4 [PMID: 29456137]
  22. Cell Death Differ. 2021 Nov;28(11):3009-3021 [PMID: 33993195]
  23. Br J Haematol. 1994 Nov;88(3):608-12 [PMID: 7819073]
  24. Blood. 2013 Aug 29;122(9):1649-57 [PMID: 23794065]
  25. Hum Mol Genet. 2019 Jan 1;28(1):133-142 [PMID: 30247636]
  26. Glycoconj J. 2017 Jun;34(3):377-391 [PMID: 28577070]
  27. Annu Rev Immunol. 2012;30:357-92 [PMID: 22224769]
  28. Biochem J. 1999 Nov 1;343 Pt 3:663-8 [PMID: 10527946]
  29. J Cell Biol. 1990 Oct;111(4):1409-18 [PMID: 2211817]
  30. Blood Adv. 2018 Apr 10;2(7):754-761 [PMID: 29599195]
  31. Am J Pathol. 2016 Sep;186(9):2390-403 [PMID: 27398974]
  32. Fundam Clin Pharmacol. 2016 Oct;30(5):483-5 [PMID: 27343486]
  33. Am J Hematol. 1996 Sep;53(1):46-8 [PMID: 8813098]
  34. Nature. 2013 Oct 10;502(7470):232-6 [PMID: 23934107]
  35. J Biol Chem. 1996 Aug 2;271(31):18732-42 [PMID: 8702529]
  36. Nat Med. 2008 Jun;14(6):648-55 [PMID: 18488037]
  37. J Cell Physiol. 1996 Jul;168(1):97-104 [PMID: 8647928]
  38. Cancer Cell. 2005 Apr;7(4):387-97 [PMID: 15837627]
  39. J Cell Biol. 1992 Jul;118(2):445-56 [PMID: 1378449]
  40. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16143-8 [PMID: 22988088]
  41. Neuromuscul Disord. 2014 Dec;24(12):1068-72 [PMID: 25257349]
  42. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8360-8365 [PMID: 28716912]
  43. Blood. 2021 Dec 9;138(23):2408-2424 [PMID: 34324649]
  44. Chem Biol. 2005 Mar;12(3):267-77 [PMID: 15797210]
  45. J Cell Biol. 1983 Feb;96(2):510-4 [PMID: 6833368]
  46. Nat Med. 2009 Nov;15(11):1273-80 [PMID: 19783995]
  47. Sci Signal. 2012 Oct 30;5(248):ra78 [PMID: 23112346]
  48. J Biol Chem. 2007 Mar 23;282(12):9127-42 [PMID: 17264077]
  49. Am J Hematol. 2015 May;90(5):E94-5 [PMID: 25615710]
  50. Nat Commun. 2020 Jan 17;11(1):356 [PMID: 31953383]
  51. Blood. 1975 Jan;45(1):11-20 [PMID: 803103]
  52. J Cell Sci. 1983 Sep;63:155-71 [PMID: 6415073]
  53. J Thromb Haemost. 2022 Jan;20(1):196-207 [PMID: 34529349]
  54. J Biol Chem. 2005 May 6;280(18):18025-32 [PMID: 15741160]
  55. Nat Commun. 2015 Jul 17;6:7737 [PMID: 26185093]
  56. Elife. 2019 Aug 22;8: [PMID: 31436532]
  57. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14683-8 [PMID: 9405673]
  58. Br J Haematol. 1996 Jul;94(1):34-9 [PMID: 8757505]
  59. J Biol Chem. 1998 Mar 27;273(13):7478-87 [PMID: 9516447]
  60. Life Sci. 2008 May 7;82(19-20):1023-31 [PMID: 18407295]
  61. Platelets. 2019;30(6):743-751 [PMID: 30296193]
  62. Haematologica. 2018 Dec;103(12):e613-e617 [PMID: 30115659]
  63. N Engl J Med. 2013 Dec 19;369(25):2391-2405 [PMID: 24325359]
  64. Haematologica. 2006 Apr;91(4):445-51 [PMID: 16533727]
  65. J Biol Chem. 2011 Jun 3;286(22):19892-904 [PMID: 21454685]
  66. N Engl J Med. 2017 Feb 2;376(5):429-439 [PMID: 27959701]
  67. Nature. 1978 Feb 16;271(5646):674-5 [PMID: 625337]
  68. Thromb Res. 1982 Jun 15;26(6):443-55 [PMID: 7112520]
  69. Nat Med. 2015 Jan;21(1):47-54 [PMID: 25485912]
  70. Exp Cell Res. 2012 Jan 1;318(1):25-32 [PMID: 22008103]
  71. J Biol Chem. 1988 Jan 15;263(2):1052-62 [PMID: 3335514]
  72. Eur Heart J. 2003 Dec;24(24):2166-79 [PMID: 14659768]
  73. J Biol Chem. 2005 Jan 28;280(4):2745-9 [PMID: 15548541]
  74. Platelets. 2020 Nov 16;31(8):1080-1084 [PMID: 31931672]
  75. Angew Chem Int Ed Engl. 2002 Feb 1;41(3):391-412 [PMID: 12491369]
  76. J Biol Chem. 1991 Apr 5;266(10):6342-52 [PMID: 2007587]
  77. Glycobiology. 2014 Dec;24(12):1242-51 [PMID: 25258391]
  78. Glycobiology. 1996 Jul;6(5):551-9 [PMID: 8877376]
  79. Glycoconj J. 1996 Feb;13(1):19-26 [PMID: 8785483]
  80. Chem Biol Drug Des. 2008 Dec;72(6):455-82 [PMID: 19090915]
  81. Nat Rev Immunol. 2016 Oct;16(10):639-49 [PMID: 27498766]
  82. N Engl J Med. 2013 Dec 19;369(25):2379-90 [PMID: 24325356]
  83. Blood. 2007 May 1;109(9):3745-8 [PMID: 17197432]
  84. J Biol Chem. 1989 Jul 25;264(21):12115-8 [PMID: 2545698]
  85. FEBS J. 2012 Apr;279(7):1177-97 [PMID: 22333131]
  86. Res Pract Thromb Haemost. 2021 May 03;5(4):e12506 [PMID: 33977209]
  87. Blood. 2021 Apr 15;137(15):2085-2089 [PMID: 33238000]
  88. J Exp Med. 2020 Apr 6;217(4): [PMID: 31978220]
  89. Annu Rev Biochem. 2014;83:129-57 [PMID: 24606135]
  90. Methods Enzymol. 2010;479:223-41 [PMID: 20816169]
  91. Blood. 2018 Aug 16;132(7):727-734 [PMID: 29914979]
  92. Blood. 2018 Oct 25;132(17):1851-1854 [PMID: 30171045]
  93. N Engl J Med. 2005 Apr 28;352(17):1779-90 [PMID: 15858187]

Grants

  1. P01 HL151333/NHLBI NIH HHS
  2. P01 HL107146/NHLBI NIH HHS
  3. R01 HL089224/NHLBI NIH HHS
  4. R01 HL126743/NHLBI NIH HHS
  5. K12 HL141954/NHLBI NIH HHS

MeSH Term

Animals
Blood Platelets
Humans
Megakaryocytes
Mice
Polysaccharides
Thrombocytopenia

Chemicals

Polysaccharides

Word Cloud

Created with Highcharts 10.0.0plateletmegakaryocytecountglycansmouseHumansproduceremove1011plateletsdailymaintainsteady-statetightregulationproductionremovalbloodcirculationpreventsanomaliesprocessesresultingreducedincreasedoftenassociatedriskbleedingovertthrombusformationrespectivelyreviewfocusesrolealsoknowncarbohydratesoligosaccharidesincludingN-O-glycansproteoglycansglycosaminoglycanshumanphysiologyBasedrecentclinicalobservationsmodelsfocusedpathologicaspectsglycanbiosynthesisdegradationeffectsnumbersfunctionClinicalimpactbiology

Similar Articles

Cited By