Heat Activation and Inactivation of Bacterial Spores: Is There an Overlap?

Juan Wen, Jan P P M Smelt, Norbert O E Vischer, Arend L de Vos, Peter Setlow, Stanley Brul
Author Information
  1. Juan Wen: Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
  2. Jan P P M Smelt: Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
  3. Norbert O E Vischer: Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
  4. Arend L de Vos: Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
  5. Peter Setlow: Department of Molecular Biology and Biophysics, UConn Health, Connecticut, USA.
  6. Stanley Brul: Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. ORCID

Abstract

Heat activation at a sublethal temperature is widely applied to promote species spore germination. This treatment also has the potential to be employed in food processing to eliminate undesired bacterial spores by enhancing their germination and then inactivating the less-heat-resistant germinated spores at a milder temperature. However, incorrect heat treatment could also generate heat damage in spores and lead to more heterogeneous spore germination. Here, the heat activation and heat damage profile of Bacillus subtilis spores was determined by testing spore germination and outgrowth at both population and single-spore levels. The heat treatments used were 40 to 80°C and for 0 to 300 min. The results were as follows. (i) Heat activation at 40 to 70°C promoted l-valine- and l-asparagine-glucose-fructose-potassium (AGFK)-induced germination in a time-dependent manner. (ii) The optimal heat activation temperatures for AGFK and l-valine germination via the GerB plus GerK or GerA germinant receptors were 65°C and 50 to 65°C, respectively. (iii) Heat inactivation of dormant spores appeared at 70°C, and the heat damage of molecules essential for germination and growth began at 70 and 65°C, respectively. (iv) Heat treatment at 75°C resulted in both activation of germination and damage to the germination apparatus, and 80°C treatment caused more pronounced heat damage. (v) For the spores that should withstand adverse environmental temperatures in nature, heat activation seemed functional for a subsequent optimal germination process, while heat damage affected both germination and outgrowth. Bacterial spores are thermal-stress-resistant structures that can thus survive food preservation strategies and revive through the process of spore germination. The more heat resistant spores are, the more heterogeneous their germination upon the addition of germinants. Upon germination, spores can cause food spoilage and food intoxication. Here, we provide new information on both heat activation and inactivation regimes and their effects on the (heterogeneity of) spore germination.

Keywords

References

  1. Opt Express. 2009 Sep 14;17(19):16480-91 [PMID: 19770863]
  2. Appl Opt. 2006 Jan 20;45(3):445-50 [PMID: 16463727]
  3. J Bacteriol. 2010 Jul;192(14):3608-19 [PMID: 20472791]
  4. Appl Environ Microbiol. 2005 Oct;71(10):5879-87 [PMID: 16204500]
  5. Lett Appl Microbiol. 1999 Oct;29(4):228-232 [PMID: 10583749]
  6. J Bacteriol. 1970 Jan;101(1):58-64 [PMID: 4983656]
  7. Sci Rep. 2018 Jun 14;8(1):9128 [PMID: 29904100]
  8. J Vis Exp. 2019 Apr 15;(146): [PMID: 31033949]
  9. Int J Food Microbiol. 2003 Jan 25;80(2):131-43 [PMID: 12381399]
  10. J Food Prot. 2011 Dec;74(12):2079-89 [PMID: 22186048]
  11. Appl Environ Microbiol. 2018 Mar 19;84(7): [PMID: 29330188]
  12. Food Microbiol. 2015 Feb;45(Pt A):54-62 [PMID: 25481062]
  13. J Bacteriol. 2015 Mar;197(6):1095-103 [PMID: 25583976]
  14. J Appl Microbiol. 2011 Nov;111(5):1212-23 [PMID: 21883730]
  15. J Appl Microbiol. 2012 Oct;113(4):824-36 [PMID: 22776375]
  16. PLoS One. 2013;8(3):e58972 [PMID: 23536843]
  17. J Bacteriol. 1964 Aug;88:313-8 [PMID: 14203345]
  18. J Bacteriol. 2009 Sep;191(18):5584-91 [PMID: 19592590]
  19. Annu Rev Food Sci Technol. 2016;7:457-82 [PMID: 26934174]
  20. Annu Rev Microbiol. 2017 Sep 8;71:459-477 [PMID: 28697670]
  21. J Bacteriol. 2000 May;182(9):2513-9 [PMID: 10762253]
  22. Food Res Int. 2019 Nov;125:108514 [PMID: 31554087]
  23. J Bacteriol. 2014 May;196(9):1733-40 [PMID: 24563034]
  24. Int J Food Microbiol. 2015 May 18;201:27-34 [PMID: 25727186]
  25. J Biol Chem. 1971 May 25;246(10):3189-95 [PMID: 4995746]
  26. Int J Food Microbiol. 2008 Nov 30;128(1):34-40 [PMID: 18926580]
  27. Appl Environ Microbiol. 2011 May;77(9):3085-91 [PMID: 21398481]
  28. J Bacteriol. 1992 Jul;174(13):4463-74 [PMID: 1624439]
  29. Mol Cell. 2015 Feb 19;57(4):695-707 [PMID: 25661487]
  30. Food Microbiol. 2015 Feb;45(Pt A):18-25 [PMID: 25481058]
  31. Front Microbiol. 2016 Oct 13;7:1636 [PMID: 27790212]
  32. J Bacteriol. 2012 Feb;194(3):646-52 [PMID: 22123250]
  33. Appl Environ Microbiol. 2015 Apr;81(8):2927-38 [PMID: 25681191]
  34. Appl Environ Microbiol. 2010 Mar;76(6):1796-805 [PMID: 20097820]
  35. Crit Rev Food Sci Nutr. 2014;54(10):1371-85 [PMID: 24564593]

MeSH Term

Bacillus
Bacillus subtilis
Bacterial Proteins
Hot Temperature
Spores, Bacterial

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0germinationheatsporesactivationsporedamageHeattreatmentfood65°Ctemperaturealsobacterialheterogeneoussubtilisoutgrowth4080°C70°CAGFKoptimaltemperaturesrespectivelyinactivationprocessBacterialcanheterogeneitysublethalwidelyappliedpromotespeciespotentialemployedprocessingeliminateundesiredenhancinginactivatingless-heat-resistantgerminatedmilderHoweverincorrectgenerateleadprofileBacillusdeterminedtestingpopulationsingle-sporelevelstreatmentsused0300 minresultsfollowspromotedl-valine-l-asparagine-glucose-fructose-potassium-inducedtime-dependentmanneriil-valineviaGerBplusGerKGerAgerminantreceptors50iiidormantappearedmoleculesessentialgrowthbegan70iv75°Cresultedapparatuscausedpronouncedvwithstandadverseenvironmentalnatureseemedfunctionalsubsequentaffectedthermal-stress-resistantstructuresthussurvivepreservationstrategiesreviveresistantuponadditiongerminantsUponcausespoilageintoxicationprovidenewinformationregimeseffectsActivationInactivationSpores:Overlap?Bacillus

Similar Articles

Cited By (13)