Sapidolide A alleviates acetaminophen-induced acute liver injury by inhibiting NLRP3 inflammasome activation in macrophages.

Jin-Cheng Wang, Qi Shi, Qian Zhou, Lu-Lu Zhang, Yue-Ping Qiu, Da-Yong Lou, Li-Qin Zhou, Bo Yang, Qiao-Jun He, Qin-Jie Weng, Jia-Jia Wang
Author Information
  1. Jin-Cheng Wang: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  2. Qi Shi: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  3. Qian Zhou: Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China.
  4. Lu-Lu Zhang: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  5. Yue-Ping Qiu: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  6. Da-Yong Lou: Medication Department, Zhuji People's Hospital of Zhejiang Province, Zhuji, Shaoxing, 311800, China.
  7. Li-Qin Zhou: Medication Department, Zhuji People's Hospital of Zhejiang Province, Zhuji, Shaoxing, 311800, China.
  8. Bo Yang: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  9. Qiao-Jun He: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  10. Qin-Jie Weng: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  11. Jia-Jia Wang: Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. wangjiajia3301@zju.edu.cn.

Abstract

Macrophages play a critical role in the pathogenesis of acetaminophen (APAP)-induced liver injury (AILI), a major cause of acute liver failure or even death. Sapidolide A (SA) is a sesquiterpene lactone extracted from Baccaurea ramiflora Lour., a folk medicine used in China to treat inflammatory diseases. In this study, we investigated whether SA exerted protective effects on macrophages, thus alleviated the secondary hepatocyte damage in an AILI. We showed that SA (5-20 μM) suppressed the phosphorylated activation of NF-κB in a dose-dependent manner, thereby inhibiting the expression and activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and pyroptosis in LPS/ATP-treated mouse bone marrow-derived primary macrophages (BMDMs). In human hepatic cell line L02 co-cultured with BMDMs, SA (10 μM) protected macrophages from the pyroptosis induced by APAP-damaged L02 cells. Moreover, SA treatment reduced the secondary liver cell damage aggravated by the conditioned medium (CM) taken from LPS/ATP-treated macrophages. The in vivo assessments conducted on mice pretreated with SA (25, 50 mg/kg, ip) then with a single dose of APAP (400 mg/kg, ip) showed that SA significantly alleviated inflammatory responses of AILI by inhibiting the expression and activation of the NLRP3 inflammasome. In general, the results reported herein revealed that SA exerts anti-inflammatory effects by regulating NLRP3 inflammasome activation in macrophages, which suggests that SA has great a potential for use in the treatment of AILI patients.

Keywords

References

  1. Katarey D, Verma S. Drug-induced liver injury. Clin Med. 2016;16:s104–s9. [DOI: 10.7861/clinmedicine.16-6-s104]
  2. Fisher K, Vuppalanchi R, Saxena R. Drug-induced liver injury. Arch Pathol Lab Med. 2015;139:876–87. [PMID: 26125428]
  3. Lee WM. Drug-induced acute liver failure. Clin Liver Dis. 2013;17:575–86. viii [PMID: 24099019]
  4. Woolbright BL, Jaeschke H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J Hepatol. 2017;66:836–48. [PMID: 27913221]
  5. Ramachandran A, Jaeschke H. Acetaminophen hepatotoxicity. Semin Liver Dis. 2019;39:221–34. [PMID: 30849782]
  6. Yang R, Tonnesseen TI. DAMPs and sterile inflammation in drug hepatotoxicity. Hepatol Int. 2019;13:42–50. [PMID: 30474802]
  7. Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol. 2020;138:111240. [PMID: 32145352]
  8. Fisher ES, Curry SC. Evaluation and treatment of acetaminophen toxicity. Adv Pharmacol. 2019;85:263–72. [PMID: 31307590]
  9. Chiew AL, Gluud C, Brok J, Buckley NA. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev. 2018;2:CD003328. [PMID: 29473717]
  10. Hendrickson RG. What is the most appropriate dose of N-acetylcysteine after massive acetaminophen overdose? Clin Toxicol. 2019;57:686–91. [DOI: 10.1080/15563650.2019.1579914]
  11. Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36:247–77. [PMID: 29328785]
  12. Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev. 2000;174:21–34. [PMID: 10807504]
  13. Lewis PS, Campana L, Aleksieva N, Cartwright JA, Mackinnon A, O’Duibhir E, et al. Alternatively activated macrophages promote resolution of necrosis following acute liver injury. J Hepatol. 2020;73:349–60. [DOI: 10.1016/j.jhep.2020.02.031]
  14. Yang W, Tao Y, Wu Y, Zhao X, Ye W, Zhao D, et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun. 2019;10:1076. [PMID: 30842418]
  15. McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 2012;122:1574–83. [PMID: 22378043]
  16. Cover C, Liu J, Farhood A, Malle E, Waalkes MP, Bajt ML, et al. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2006;216:98–107. [PMID: 16781746]
  17. Woolbright BL, Jaeschke H. Mechanisms of inflammatory liver injury and drug-induced hepatotoxicity. Curr Pharmacol Rep. 2018;4:346–57. [PMID: 30560047]
  18. Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–26. [PMID: 26210152]
  19. Li M, Sun X, Zhao J, Xia L, Li J, Xu M, et al. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell Mol Immunol. 2020;17:753–64. [PMID: 31481754]
  20. Wang Y, Zhao Y, Wang Z, Sun R, Zou B, Li R, et al. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front Immunol. 2021;12:652782. [PMID: 34054813]
  21. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011;243:206–14. [PMID: 21884178]
  22. Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400. [PMID: 26055245]
  23. Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest. 2009;119:305–14. [PMID: 19164858]
  24. Williams CD, Antoine DJ, Shaw PJ, Benson C, Farhood A, Williams DP, et al. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol Appl Pharmacol. 2011;252:289–97. [PMID: 21396389]
  25. Williams CD, Farhood A, Jaeschke H. Role of caspase-1 and interleukin-1beta in acetaminophen-induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol. 2010;247:169–78. [PMID: 20637792]
  26. Du YC, Lai L, Zhang H, Zhong FR, Cheng HL, Qian BL, et al. Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-kappaB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food Funct. 2020;11:7925–34. [PMID: 32820776]
  27. Cai C, Huang H, Whelan S, Liu L, Kautza B, Luciano J, et al. Benzyl alcohol attenuates acetaminophen-induced acute liver injury in a Toll-like receptor-4-dependent pattern in mice. Hepatology. 2014;60:990–1002. [PMID: 24798499]
  28. Barman PK, Mukherjee R, Prusty BK, Suklabaidya S, Senapati S, Ravindran B. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice. Cell Death Dis. 2016;7:e2224. [PMID: 27171266]
  29. Nesa ML, Karim SMS, Api K, Sarker MMR, Islam MM, Kabir A, et al. Screening of Baccaurea ramiflora (Lour.) extracts for cytotoxic, analgesic, anti-inflammatory, neuropharmacological and antidiarrheal activities. BMC Complement Alter Med. 2018;18:35. [DOI: 10.1186/s12906-018-2100-5]
  30. Usha T, Middha SK, Bhattacharya M, Lokesh P, Goyal AK. Rosmarinic acid, a new polyphenol from baccaurea ramiflora lour. leaf: a probable compound for its anti-inflammatory activity. Antioxidants. 2014;3:830–42. [PMID: 26785243]
  31. Pan ZH, Ning DS, Huang SS, Wu YF, Ding T, Luo L. A new picrotoxane sesquiterpene from the berries of Baccaurea ramiflora with antifungal activity against Colletotrichum gloeosporioides. Nat Prod Res. 2015;29:1323–7. [PMID: 25583324]
  32. Luo P, Peng S, Yan Y, Ji P, Xu J. IL-37 inhibits M1-like macrophage activation to ameliorate temporomandibular joint inflammation through the NLRP3 pathway. Rheumatology. 2020;59:3070–80. [PMID: 32417913]
  33. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89. [PMID: 31036962]
  34. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21. [PMID: 27669650]
  35. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–91. [PMID: 19570822]
  36. Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183:792–6. [PMID: 19542372]
  37. Lin KM, Hu W, Troutman TD, Jennings M, Brewer T, Li X, et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci USA. 2014;111:775–80. [PMID: 24379360]
  38. Xing Y, Yao X, Li H, Xue G, Guo Q, Yang G, et al. Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. J Immunol. 2017;199:1561–6. [PMID: 28739881]
  39. de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys. 2019;670:15–31. [PMID: 31152698]
  40. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26. [PMID: 12191486]
  41. Wang L, Manji GA, Grenier JM, Al-Garawi A, Merriam S, Lora JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277:29874–80. [PMID: 12019269]
  42. Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 2006;131:165–78. [PMID: 16831600]
  43. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem. 2008;283:13565–77. [PMID: 18337250]
  44. Mihm S. Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver. Int J Mol Sci. 2018;19:3104. [>PMCID: ]
  45. Martin-Murphy BV, Holt MP, Ju C. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol Lett. 2010;192:387–94. [PMID: 19931603]
  46. Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol. 2013;93:865–73. [PMID: 23446148]
  47. Liu ZX, Govindarajan S, Kaplowitz N. Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology. 2004;127:1760–74. [PMID: 15578514]
  48. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013;3:785–97. [PMID: 23720329]
  49. Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64:1667–82. [PMID: 27302828]
  50. Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O, Halpern Z, et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J Immunol. 2014;193:344–53. [PMID: 24890723]
  51. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, et al. Macrophage-derived IL-1alpha promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol. 2018;15:973–82. [PMID: 28504245]
  52. Gehrke N, Hovelmeyer N, Waisman A, Straub BK, Weinmann-Menke J, Worns MA, et al. Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation. J Hepatol. 2018;68:986–95. [PMID: 29366909]
  53. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2:303–36. [PMID: 24957513]
  54. Kim BM. The role of saikosaponins in therapeutic strategies for age-related diseases. Oxid Med Cell Longev. 2018;2018:8275256. [PMID: 29849917]
  55. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33:1582–614. [PMID: 26281720]
  56. Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic potential of plants and plant derived phytochemicals against acetaminophen-induced liver injury. Int J Mol Sci. 2018;19:3776. [>PMCID: ]
  57. Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018;17:274–83. [PMID: 29753208]
  58. Yang H, Wang H, Ju Z, Ragab AA, Lundback P, Long W, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med. 2015;212:5–14. [PMID: 25559892]
  59. Salama M, Elgamal M, Abdelaziz A, Ellithy M, Magdy D, Ali L, et al. Toll-like receptor 4 blocker as potential therapy for acetaminophen-induced organ failure in mice. Exp Ther Med. 2015;10:241–6. [PMID: 26170942]
  60. Ekong U, Zeng S, Dun H, Feirt N, Guo J, Ippagunta N, et al. Blockade of the receptor for advanced glycation end products attenuates acetaminophen-induced hepatotoxicity in mice. J Gastroenterol Hepatol. 2006;21:682–8. [PMID: 16677153]
  61. Hoque R, Sohail MA, Salhanick S, Malik AF, Ghani A, Robson SC, et al. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1171–9. [PMID: 22383490]
  62. Laskin DL, Gardner CR, Price VF, Jollow DJ. Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology. 1995;21:1045–50. [PMID: 7705777]
  63. Liu ZX, Han D, Gunawan B, Kaplowitz N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology. 2006;43:1220–30. [PMID: 16729305]
  64. Patel SJ, Luther J, Bohr S, Iracheta-Vellve A, Li M, King KR, et al. A novel resolvin-based strategy for limiting acetaminophen hepatotoxicity. Clin Transl Gastroenterol. 2016;7:e153. [PMID: 26986653]
  65. Liaskou E, Wilson DV, Oo YH. Innate immune cells in liver inflammation. Mediators Inflamm. 2012;2012:949157. [PMID: 22933833]
  66. Raevens S, Van Campenhout S, Debacker PJ, Lefere S, Verhelst X, Geerts A, et al. Combination of sivelestat and N-acetylcysteine alleviates the inflammatory response and exceeds standard treatment for acetaminophen-induced liver injury. J Leukoc Biol. 2020;107:341–55. [PMID: 31841237]

MeSH Term

Acetaminophen
Adenosine Triphosphate
Animals
Humans
Inflammasomes
Lipopolysaccharides
Liver
Macrophages
Mice
Mice, Inbred C57BL
NLR Family, Pyrin Domain-Containing 3 Protein
NLR Proteins

Chemicals

Inflammasomes
Lipopolysaccharides
NLR Family, Pyrin Domain-Containing 3 Protein
NLR Proteins
Nlrp3 protein, mouse
Acetaminophen
Adenosine Triphosphate

Word Cloud

Created with Highcharts 10.0.0SAmacrophagesliveractivationNLRP3inflammasomeAILIinjuryacuteSapidolideinhibitingpyroptosisacetaminophenAPAPinflammatoryeffectsalleviatedsecondarydamageshowedexpressionLPS/ATP-treatedbonemarrow-derivedprimaryBMDMscellL02treatmentipMacrophagesplaycriticalrolepathogenesis-inducedmajorcausefailureevendeathsesquiterpenelactoneextractedBaccaurearamifloraLourfolkmedicineusedChinatreatdiseasesstudyinvestigatedwhetherexertedprotectivethushepatocyte5-20 μMsuppressedphosphorylatedNF-κBdose-dependentmannertherebyNOD-likereceptorprotein3mousehumanhepaticlineco-cultured10 μMprotectedinducedAPAP-damagedcellsMoreoverreducedaggravatedconditionedmediumCMtakenvivoassessmentsconductedmicepretreated2550 mg/kgsingledose400 mg/kgsignificantlyresponsesgeneralresultsreportedhereinrevealedexertsanti-inflammatoryregulatingsuggestsgreata potentialusepatientsalleviatesacetaminophen-inducedBMDM

Similar Articles

Cited By