Acid-sensing ion channel 1a regulates the specificity of reconsolidation of conditioned threat responses.

Erin E Koffman, Charles M Kruse, Kritika Singh, Farzaneh Sadat Naghavi, Melissa A Curtis, Jennifer Egbo, Mark Houdi, Boren Lin, Hui Lu, Jacek Debiec, Jianyang Du
Author Information
  1. Erin E Koffman: Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
  2. Charles M Kruse: Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
  3. Kritika Singh: Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
  4. Farzaneh Sadat Naghavi: Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
  5. Melissa A Curtis: Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
  6. Jennifer Egbo: Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
  7. Mark Houdi: Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
  8. Boren Lin: Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
  9. Hui Lu: Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington DC, USA.
  10. Jacek Debiec: Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
  11. Jianyang Du: Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Abstract

Recent research on altering threat memory has focused on a reconsolidation window. During reconsolidation, threat memories are retrieved and become labile. Reconsolidation of distinct threat memories is synapse dependent, whereas the underlying regulatory mechanism of the specificity of reconsolidation is poorly understood. We designed a unique behavioral paradigm in which a distinct threat memory can be retrieved through the associated conditioned stimulus. In addition, we proposed a regulatory mechanism by which the activation of acid-sensing ion channels (ASICs) strengthens the distinct memory trace associated with the memory reconsolidation to determine its specificity. The activation of ASICs by CO2 inhalation, when paired with memory retrieval, triggers the reactivation of the distinct memory trace, resulting in greater memory lability. ASICs potentiate the memory trace by altering the amygdala-dependent synaptic transmission and plasticity at selectively targeted synapses. Our results suggest that inhaling CO2 during the retrieval event increases the lability of a threat memory through a synapse-specific reconsolidation process.

Keywords

References

  1. Cold Spring Harb Perspect Biol. 2015 Sep 09;7(10):a021782 [PMID: 26354895]
  2. Biol Psychiatry. 2007 Nov 15;62(10):1140-8 [PMID: 17662962]
  3. Science. 2013 Jul 26;341(6144):387-91 [PMID: 23888038]
  4. Curr Gene Ther. 2016;16(3):156-67 [PMID: 27216914]
  5. Annu Rev Neurosci. 2008;31:47-67 [PMID: 18284372]
  6. Curr Biol. 2016 Oct 10;26(19):2690-2695 [PMID: 27568591]
  7. Mediators Inflamm. 2017;2017:3728096 [PMID: 29056828]
  8. Nat Neurosci. 2020 Jan;23(1):32-46 [PMID: 31792465]
  9. Cold Spring Harb Perspect Biol. 2015 Jul 01;7(7):a021758 [PMID: 26134321]
  10. Sci Adv. 2018 Oct 24;4(10):eaau3075 [PMID: 30417090]
  11. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8961-6 [PMID: 24889629]
  12. Eur J Neurosci. 2017 Oct;46(7):2241-2252 [PMID: 28612962]
  13. Science. 2009 May 15;324(5929):951-5 [PMID: 19342552]
  14. Genes Brain Behav. 2017 Jan;16(1):101-117 [PMID: 27561549]
  15. Learn Mem. 2000 Mar-Apr;7(2):73-84 [PMID: 10753974]
  16. Science. 2010 Nov 19;330(6007):1108-12 [PMID: 21030604]
  17. J Biol Chem. 2004 Oct 15;279(42):43716-24 [PMID: 15302881]
  18. Neuron. 2017 Sep 27;96(1):43-55 [PMID: 28957675]
  19. Nat Neurosci. 2010 May;13(5):536-7 [PMID: 20348916]
  20. Nature. 2000 Aug 17;406(6797):722-6 [PMID: 10963596]
  21. Elife. 2017 Jun 26;6: [PMID: 28650315]
  22. Nature. 2012 Mar 22;484(7394):381-5 [PMID: 22441246]
  23. Front Pharmacol. 2019 May 21;10:555 [PMID: 31178731]
  24. Elife. 2014 Jun 24;3:e02736 [PMID: 24963141]
  25. Sci Rep. 2020 Feb 24;10(1):3319 [PMID: 32094477]
  26. Curr Biol. 2013 Sep 9;23(17):R746-50 [PMID: 24028957]
  27. Front Behav Neurosci. 2011 Mar 07;5:12 [PMID: 21436877]
  28. Trends Neurosci. 2007 Jun;30(6):284-91 [PMID: 17418904]
  29. J Pharmacol Exp Ther. 2009 Sep;330(3):745-55 [PMID: 19483072]
  30. J Vis Exp. 2012 Aug 24;(66):e3893 [PMID: 22951626]
  31. Neural Plast. 2016;2016:3025948 [PMID: 26989514]
  32. Front Cell Neurosci. 2018 Oct 10;12:342 [PMID: 30364044]
  33. Bio Protoc. 2017 Oct 20;7(20):e2578 [PMID: 34595260]
  34. Neurobiol Learn Mem. 2018 Apr;150:84-92 [PMID: 29535041]
  35. Curr Drug Targets. 2012 Feb;13(2):263-71 [PMID: 22204324]
  36. Biol Psychiatry. 2014 Dec 1;76(11):895-901 [PMID: 24813334]
  37. Science. 2012 Sep 21;337(6101):1550-2 [PMID: 22997340]
  38. Nat Neurosci. 2007 Apr;10(4):414-6 [PMID: 17351634]
  39. Learn Mem. 2010 Sep 30;17(10):512-21 [PMID: 20884753]
  40. Trends Neurosci. 2009 Aug;32(8):413-20 [PMID: 19640595]
  41. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8218-23 [PMID: 23630279]
  42. Physiol Rev. 2021 Apr 1;101(2):611-681 [PMID: 32970967]
  43. Nat Rev Neurosci. 2007 Apr;8(4):262-75 [PMID: 17342174]
  44. Proc Jpn Acad Ser B Phys Biol Sci. 2020;96(3):95-106 [PMID: 32161213]
  45. Cell. 2009 Nov 25;139(5):1012-21 [PMID: 19945383]
  46. Psychopharmacology (Berl). 2013 Apr;226(4):631-47 [PMID: 23404065]
  47. Neuron. 2005 Nov 23;48(4):635-46 [PMID: 16301179]
  48. Nature. 2009 Dec 17;462(7275):920-4 [PMID: 19946265]
  49. Nature. 2010 Jan 7;463(7277):49-53 [PMID: 20010606]
  50. Nat Neurosci. 2014 Aug;17(8):1083-91 [PMID: 24952644]
  51. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5421-6 [PMID: 24706862]
  52. J Neurosci. 2010 Nov 10;30(45):14993-7 [PMID: 21068303]
  53. Science. 1979 Jun 22;204(4399):1319-20 [PMID: 572083]
  54. J Am Heart Assoc. 2018 Nov 6;7(21):e009847 [PMID: 30608188]

Grants

  1. R01 MH113986/NIMH NIH HHS

MeSH Term

Acid Sensing Ion Channels
Acoustic Stimulation
Animals
Behavior, Animal
Conditioning, Classical
Female
Gene Expression Regulation
Male
Memory
Mice
Mice, Inbred C57BL
Mice, Transgenic
Models, Animal
RNA

Chemicals

ASIC1 protein, mouse
Acid Sensing Ion Channels
RNA

Word Cloud

Created with Highcharts 10.0.0memorythreatreconsolidationdistinctspecificityASICstracealteringmemoriesretrievedregulatorymechanismassociatedconditionedactivationionchannelsCO2retrievallabilityRecentresearchfocusedwindowbecomelabileReconsolidationsynapsedependentwhereasunderlyingpoorlyunderstooddesigneduniquebehavioralparadigmcanstimulusadditionproposedacid-sensingstrengthensdetermineinhalationpairedtriggersreactivationresultinggreaterpotentiateamygdala-dependentsynaptictransmissionplasticityselectivelytargetedsynapsesresultssuggestinhalingeventincreasessynapse-specificprocessAcid-sensingchannel1aregulatesresponsesIonMemoryNeurosciencePsychiatricdiseases

Similar Articles

Cited By