Anaerobic digestate management, environmental impacts, and techno-economic challenges.

Barbara Lamolinara, Amaury Pérez-Martínez, Estela Guardado-Yordi, Christian Guillén Fiallos, Karel Diéguez-Santana, Gerardo J Ruiz-Mercado
Author Information
  1. Barbara Lamolinara: Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal - Zona Industrial, Marinha Grande 2430-028, Portugal.
  2. Amaury Pérez-Martínez: Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador.
  3. Estela Guardado-Yordi: Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador.
  4. Christian Guillén Fiallos: Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador.
  5. Karel Diéguez-Santana: Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador.
  6. Gerardo J Ruiz-Mercado: U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin L. King Dr. Cincinnati, OH 45268, USA; Chemical Engineering Graduate Program, University of Atlántico, Puerto Colombia 080007, Colombia. Electronic address: ruiz-mercado.gerardo@epa.gov.

Abstract

Digestate is a nutrient-rich by-product from organic waste anaerobic digestion but can contribute to nutrient pollution without comprehensive management strategies. Some nutrient pollution impacts include harmful algal blooms, hypoxia, and eutrophication. This contribution explores current productive uses of digestate by analyzing its feedstocks, processing technologies, economics, product quality, impurities, incentive policies, and regulations. The analyzed studies found that feedstock, processing technology, and process operating conditions highly influence the digestate product characteristics. Also, incentive policies and regulations for managing organic waste by anaerobic digestion and producing digestate as a valuable product promote economic benefits. However, there are not many governmental and industry-led quality assurance certification systems for supporting commercializing digestate products. The sustainable and safe use of digestate in different applications needs further development of technologies and processes. Also, incentives for digestate use, quality regulation, and social awareness are essential to promote digestate product commercialization as part of the organic waste circular economy paradigm. Therefore, future studies about circular business models and standardized international regulations for digestate products are needed.

Keywords

References

  1. Toxicology. 2011 May 10;283(2-3):65-87 [PMID: 21414382]
  2. Bioresour Technol. 2012 Oct;122:27-34 [PMID: 22608938]
  3. Bioresour Technol. 2014 Oct;169:543-551 [PMID: 25089896]
  4. Waste Manag. 2018 Dec;82:276-284 [PMID: 30509590]
  5. Bioresour Technol. 2016 Apr;205:75-81 [PMID: 26812140]
  6. Bioresour Technol. 2018 Feb;249:1040-1043 [PMID: 29102326]
  7. Bioresour Technol. 2021 Aug;333:125110 [PMID: 33882383]
  8. Bioresour Technol. 2015;189:327-333 [PMID: 25911592]
  9. Bioresour Technol. 2013 Mar;131:172-8 [PMID: 23347932]
  10. Sci Total Environ. 2019 Jan 10;647:11-19 [PMID: 30077158]
  11. Resour Conserv Recycl. 2022 Feb;177:1-12 [PMID: 35370356]
  12. Environ Monit Assess. 2005 Aug;107(1-3):1-9 [PMID: 16418901]
  13. Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:368-75 [PMID: 26838863]
  14. Waste Manag. 2011 Dec;31(12):2584-9 [PMID: 21903373]
  15. Bioresour Technol. 2012 Jan;104:195-201 [PMID: 22119434]
  16. Bioresour Technol. 2002 May;83(1):27-36 [PMID: 12058828]
  17. Bioresour Technol. 2009 Mar;100(6):2005-11 [PMID: 19042126]
  18. Resour Conserv Recycl. 2021;164: [PMID: 33746361]
  19. Sci Total Environ. 2017 May 15;586:746-752 [PMID: 28214122]
  20. Bioresour Technol. 2017 Sep;239:311-317 [PMID: 28531856]
  21. Bioresour Technol. 2012 Jun;114:46-53 [PMID: 22444637]
  22. Sci Total Environ. 2016 Aug 15;562:678-689 [PMID: 27115621]
  23. Waste Manag. 2013 Jan;33(1):33-42 [PMID: 23083974]
  24. Environ Pollut. 2017 Sep;228:504-516 [PMID: 28578866]
  25. Waste Manag. 2014 Apr;34(4):747-52 [PMID: 24556263]
  26. Water Res. 2005 Dec;39(20):4879-86 [PMID: 16297957]
  27. Bioresour Technol. 2016 Jul;212:289-295 [PMID: 27115615]
  28. Waste Manag. 2017 Mar;61:258-268 [PMID: 28185851]
  29. Bioresour Technol. 2021 Oct;337:125378 [PMID: 34166927]
  30. J Hazard Mater. 2018 Oct 5;359:465-481 [PMID: 30071464]
  31. Water Res. 2016 Mar 1;90:344-353 [PMID: 26766158]
  32. Waste Manag. 2015 Feb;36:147-55 [PMID: 25529133]
  33. Waste Manag. 2019 Mar 15;87:546-558 [PMID: 31109555]
  34. ACS Sustain Chem Eng. 2019 Nov 18;7(22):18359-18374 [PMID: 32983653]
  35. J Hazard Mater. 2014 Mar 15;268:68-76 [PMID: 24468528]
  36. Environ Sci Technol. 1995 Sep 1;29(9):2352-6 [PMID: 22280278]
  37. Environ Res. 2015 Apr;138:425-31 [PMID: 25791865]
  38. Bioresour Technol. 2017 Nov;244(Pt 2):1445-1455 [PMID: 28578809]
  39. Environ Technol. 2020 Apr;41(9):1151-1159 [PMID: 30211670]
  40. Water Res. 2016 Dec 1;106:108-115 [PMID: 27697680]
  41. Waste Manag. 2019 Jun 15;93:63-71 [PMID: 31235058]
  42. Bioresour Technol. 2016 Jun;209:40-9 [PMID: 26946439]
  43. Waste Manag. 2012 Dec;32(12):2239-47 [PMID: 22863068]
  44. Bioresour Technol. 2011 Jan;102(2):1856-62 [PMID: 20971637]
  45. Water Sci Technol. 2017 Jun;75(12):2811-2817 [PMID: 28659521]
  46. Waste Manag Res. 2019 Jan;37(1_suppl):27-39 [PMID: 30761956]
  47. Bioresour Technol. 2021 Aug;333:125196 [PMID: 33901909]
  48. Bioresour Technol. 2005 Jan;96(2):135-43 [PMID: 15381209]
  49. Water Res. 2015 Sep 1;80:80-9 [PMID: 25996755]
  50. Waste Manag. 2017 Mar;61:195-205 [PMID: 27955887]
  51. Bioresour Technol. 2012 Jun;114:357-64 [PMID: 22513252]
  52. J Environ Manage. 2018 Oct 1;223:917-924 [PMID: 30005417]
  53. Bioresour Technol. 2021 Jul;332:125044 [PMID: 33826980]
  54. Comput Chem Eng. 2019 Sep 2;128:352-363 [PMID: 32704194]
  55. Sci Total Environ. 2015 Feb 1;505:357-66 [PMID: 25461037]
  56. Waste Manag. 2016 Oct;56:173-80 [PMID: 27389859]
  57. Resour Conserv Recycl. 2021 Dec;175:1-13 [PMID: 35350408]
  58. Waste Manag. 2008;28(2):367-71 [PMID: 17419044]
  59. Waste Manag. 2013 May;33(5):1035-6 [PMID: 23648114]
  60. Waste Manag. 2011 Jul;31(7):1480-7 [PMID: 21419612]
  61. Waste Manag. 2013 Dec;33(12):2641-52 [PMID: 24035244]
  62. Bioresour Technol. 2019 May;280:345-351 [PMID: 30780094]
  63. Waste Manag. 2016 Jan;47(Pt A):28-33 [PMID: 25957939]
  64. Water Res. 2013 Sep 15;47(14):4833-42 [PMID: 23871254]
  65. Waste Manag Res. 2018 Mar;36(3):221-235 [PMID: 29388488]
  66. Water Sci Technol. 2018 Sep;78(3-4):878-885 [PMID: 30252665]
  67. Waste Manag. 2017 Dec;70:247-254 [PMID: 28939246]
  68. Appl Biochem Biotechnol. 2011 Jun;164(3):268-82 [PMID: 21116733]
  69. J Hazard Mater. 2020 Apr 15;388:122032 [PMID: 31955024]
  70. Waste Manag. 2016 Aug;54:3-12 [PMID: 27236403]
  71. Bioresour Technol. 2014;152:307-15 [PMID: 24300847]
  72. Environ Sci Pollut Res Int. 2017 Jul;24(20):16560-16577 [PMID: 28551738]
  73. J Hazard Mater. 2009 Jan 30;161(2-3):1063-8 [PMID: 18502036]
  74. Waste Manag Res. 2011 Dec;29(12):1271-6 [PMID: 21746761]
  75. Environ Sci Technol. 2008 Jun 15;42(12):4507-12 [PMID: 18605578]
  76. ACS Sustain Chem Eng. 2018;6(5):6018-6031 [PMID: 31534867]
  77. Waste Manag. 2020 Feb 15;103:296-304 [PMID: 31911376]
  78. Sci Total Environ. 2017 Sep 1;593-594:91-98 [PMID: 28342421]
  79. J Environ Manage. 2020 Jun 15;264:110327 [PMID: 32217329]
  80. Bioresour Technol. 2009 Jan;100(2):578-85 [PMID: 18752938]
  81. Waste Manag Res. 2009 Nov;27(8):813-24 [PMID: 19748957]
  82. Bioresour Technol. 2019 Jan;271:409-416 [PMID: 30296748]
  83. Anaerobe. 2017 Aug;46:162-169 [PMID: 28189831]
  84. Bioresour Technol. 2021 Jun;330:124970 [PMID: 33735726]
  85. Bioresour Technol. 2020 Apr;301:122823 [PMID: 31987489]
  86. Waste Manag Res. 2014 Jul;32(7):626-33 [PMID: 24963093]
  87. Bioresour Technol. 2011 Dec;102(24):11177-82 [PMID: 22000969]
  88. Bioresour Technol. 2018 Dec;269:520-531 [PMID: 30181020]
  89. Waste Manag. 2016 Mar;49:378-389 [PMID: 26724231]
  90. Trends Biotechnol. 2016 Apr;34(4):264-275 [PMID: 26776247]
  91. Waste Manag. 2016 Feb;48:521-527 [PMID: 26452426]
  92. Bioresour Technol. 2021 Jun;329:124893 [PMID: 33690059]
  93. J Environ Manage. 2016 Dec 15;184(Pt 2):389-399 [PMID: 27742149]
  94. Bioprocess Biosyst Eng. 2017 Apr;40(4):625-631 [PMID: 28025700]
  95. Waste Manag. 2016 Oct;56:466-76 [PMID: 27425859]
  96. Waste Manag. 2020 Feb 1;102:441-451 [PMID: 31739278]
  97. Ecotoxicol Environ Saf. 2001 May;49(1):1-16 [PMID: 11386711]
  98. Bioresour Technol. 2017 Feb;225:429-437 [PMID: 27931939]

Grants

  1. EPA999999/Intramural EPA

MeSH Term

Anaerobiosis
Environment
Eutrophication

Word Cloud

Created with Highcharts 10.0.0digestatewasteproductorganicdigestionpollutionqualityregulationsDigestateanaerobicnutrientmanagementimpactsprocessingtechnologiesincentivepoliciesstudiesAlsopromoteproductsusecircularAnaerobicnutrient-richby-productcancontributewithoutcomprehensivestrategiesincludeharmfulalgalbloomshypoxiaeutrophicationcontributionexplorescurrentproductiveusesanalyzingfeedstockseconomicsimpuritiesanalyzedfoundfeedstocktechnologyprocessoperatingconditionshighlyinfluencecharacteristicsmanagingproducingvaluableeconomicbenefitsHowevermanygovernmentalindustry-ledassurancecertificationsystemssupportingcommercializingsustainablesafedifferentapplicationsneedsdevelopmentprocessesincentivesregulationsocialawarenessessentialcommercializationparteconomyparadigmThereforefuturebusinessmodelsstandardizedinternationalneededenvironmentaltechno-economicchallengesFertilizerNutrientOrganic

Similar Articles

Cited By