The natural product biosynthesis potential of the microbiomes of Earth - Bioprospecting for novel anti-microbial agents in the meta-omics era.

Aileen Ute Geers, Yannick Buijs, Mikael Lenz Strube, Lone Gram, Mikkel Bentzon-Tilia
Author Information
  1. Aileen Ute Geers: Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
  2. Yannick Buijs: Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
  3. Mikael Lenz Strube: Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
  4. Lone Gram: Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
  5. Mikkel Bentzon-Tilia: Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.

Abstract

As we stand on the brink of the post-antibiotic era, we are in dire need of novel antimicrobial compounds. Microorganisms produce a wealth of so-called secondary metabolites and have been our most prolific source of antibiotics so far. However, rediscovery of known antibiotics from well-studied cultured microorganisms, and the fact that the majority of microorganisms in the environment are out of reach by means of conventional cultivation techniques, have led to the exploration of the biosynthetic potential in natural microbial communities by novel approaches. In this mini review we discuss how sequence-based analyses have exposed an unprecedented wealth of potential for secondary metabolite production in soil, marine, and host-associated microbiomes, with a focus on the biosynthesis of non-ribosomal peptides and polyketides. Furthermore, we discuss how the complexity of natural microbiomes and the lack of standardized methodology has complicated comparisons across biomes. Yet, as even the most commonly sampled microbiomes hold promise of providing novel classes of natural products, we lastly discuss the development of approaches applied in the translation of the immense biosynthetic diversity of natural microbiomes to the procurement of novel antibiotics.

Keywords

References

  1. Nature. 2014 Feb 6;506(7486):58-62 [PMID: 24476823]
  2. mBio. 2017 Sep 5;8(5): [PMID: 28874475]
  3. J Bacteriol. 1997 Dec;179(23):7360-8 [PMID: 9393700]
  4. Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1957-62 [PMID: 24449899]
  5. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12629-34 [PMID: 21768346]
  6. Appl Environ Microbiol. 2015 Aug;81(15):5064-72 [PMID: 26002894]
  7. Nature. 2015 Jan 22;517(7535):455-9 [PMID: 25561178]
  8. J Bacteriol. 1999 Jul;181(13):4089-97 [PMID: 10383979]
  9. Clin Microbiol Rev. 2011 Jan;24(1):71-109 [PMID: 21233508]
  10. Appl Environ Microbiol. 2019 Apr 4;85(8): [PMID: 30737349]
  11. Nat Protoc. 2017 Oct;12(10):2232-2242 [PMID: 29532802]
  12. Nat Protoc. 2007;2(5):1297-305 [PMID: 17546026]
  13. PLoS Comput Biol. 2014 Dec 04;10(12):e1004016 [PMID: 25474254]
  14. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14811-14816 [PMID: 27911822]
  15. Antimicrob Agents Chemother. 2011 Jul;55(7):3305-12 [PMID: 21502631]
  16. mBio. 2016 Sep 27;7(5): [PMID: 27677794]
  17. Nat Microbiol. 2018 Apr;3(4):415-422 [PMID: 29434326]
  18. Microbiology (Reading). 2017 Oct;163(10):1409-1414 [PMID: 28942758]
  19. J Ind Microbiol Biotechnol. 2014 Jan;41(1):75-85 [PMID: 24241933]
  20. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6258-63 [PMID: 21444795]
  21. FEMS Microbiol Ecol. 2019 Apr 1;95(4): [PMID: 30848780]
  22. Nucleic Acids Res. 2020 Jan 8;48(D1):D454-D458 [PMID: 31612915]
  23. Nat Prod Rep. 2019 Sep 1;36(9):1333-1350 [PMID: 31490501]
  24. ISME J. 2013 Sep;7(9):1842-51 [PMID: 23598791]
  25. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9508-9518 [PMID: 32291345]
  26. Appl Environ Microbiol. 2005 Aug;71(8):4840-9 [PMID: 16085882]
  27. Nat Rev Microbiol. 2007 Sep;5(9):689-99 [PMID: 17676055]
  28. ISME J. 2011 Jan;5(1):61-70 [PMID: 20613790]
  29. Org Lett. 2001 Jun 28;3(13):1981-4 [PMID: 11418029]
  30. Mar Environ Res. 2017 Jul;128:58-69 [PMID: 27160988]
  31. J Am Chem Soc. 2012 Jul 25;134(29):11988-91 [PMID: 22784372]
  32. Microbiome. 2019 May 22;7(1):78 [PMID: 31118083]
  33. Appl Environ Microbiol. 2007 Apr;73(7):2144-55 [PMID: 17293531]
  34. Appl Environ Microbiol. 2012 May;78(10):3744-52 [PMID: 22427492]
  35. Appl Environ Microbiol. 2010 Apr;76(8):2487-99 [PMID: 20154113]
  36. RSC Chem Biol. 2021 Feb 2;2(2):556-567 [PMID: 34458799]
  37. Front Microbiol. 2018 Dec 10;9:3042 [PMID: 30619133]
  38. Nat Biotechnol. 2021 Apr;39(4):499-509 [PMID: 33169036]
  39. PLoS One. 2015 Sep 23;10(9):e0138327 [PMID: 26398766]
  40. Nat Rev Drug Discov. 2013 May;12(5):371-87 [PMID: 23629505]
  41. Appl Environ Microbiol. 2003 Jan;69(1):49-55 [PMID: 12513976]
  42. ISME J. 2016 Feb;10(2):427-36 [PMID: 26394010]
  43. ACS Chem Biol. 2017 Dec 15;12(12):3093-3102 [PMID: 29121465]
  44. Cell. 2014 Sep 11;158(6):1402-1414 [PMID: 25215495]
  45. Antimicrob Agents Chemother. 2011 Apr;55(4):1332-7 [PMID: 21263047]
  46. Appl Environ Microbiol. 2013 Mar;79(5):1598-605 [PMID: 23275501]
  47. FEMS Microbiol Ecol. 2018 Apr 1;94(4): [PMID: 29514229]
  48. mSystems. 2018 Oct 2;3(5): [PMID: 30320216]
  49. J Basic Microbiol. 2012 Apr;52(2):224-31 [PMID: 21780139]
  50. Lab Chip. 2016 Jun 21;16(12):2168-87 [PMID: 27212581]
  51. J Nat Prod. 2004 Aug;67(8):1283-6 [PMID: 15332842]
  52. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11797-802 [PMID: 23824289]
  53. ACS Chem Biol. 2021 May 21;16(5):813-819 [PMID: 33955744]
  54. Elife. 2021 Mar 25;10: [PMID: 33764297]
  55. Sci Rep. 2017 May 24;7(1):2330 [PMID: 28539610]
  56. J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):129-41 [PMID: 26586404]
  57. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5 [PMID: 27140646]
  58. Microbiome. 2019 May 4;7(1):71 [PMID: 31054577]
  59. J Ind Microbiol Biotechnol. 2006 Jun;33(6):423-30 [PMID: 16432724]
  60. Nat Commun. 2019 Aug 26;10(1):3848 [PMID: 31451725]
  61. Nucleic Acids Res. 2019 Jan 8;47(D1):D625-D630 [PMID: 30395294]
  62. Sci Rep. 2019 Dec 9;9(1):18618 [PMID: 31819112]
  63. Microorganisms. 2020 Feb 18;8(2): [PMID: 32085500]
  64. Environ Microbiol. 2006 Aug;8(8):1460-70 [PMID: 16872408]
  65. Drug Discov Today. 2010 Nov;15(21-22):884-6 [PMID: 20869461]
  66. J Mol Evol. 2003 Apr;56(4):446-57 [PMID: 12664164]
  67. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11615-11620 [PMID: 29078342]
  68. Chem Biol. 2014 Aug 14;21(8):1023-33 [PMID: 25065533]
  69. J Bacteriol. 1940 Oct;40(4):581-600 [PMID: 16560371]
  70. mBio. 2020 Jun 16;11(3): [PMID: 32546614]
  71. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3757-62 [PMID: 24550451]
  72. ISME J. 2022 Jan;16(1):101-111 [PMID: 34253854]
  73. Cell. 2014 Jul 17;158(2):412-421 [PMID: 25036635]
  74. Microb Ecol. 2005 Jan;49(1):10-24 [PMID: 15614464]
  75. Nat Prod Rep. 2015 Jul;32(7):956-70 [PMID: 26000872]
  76. Ann N Y Acad Sci. 2010 Dec;1213:112-24 [PMID: 21175680]
  77. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14002-7 [PMID: 12381784]
  78. FEMS Microbiol Ecol. 2021 Mar 31;97(4): [PMID: 33693627]
  79. Elife. 2015 Jan 19;4:e05048 [PMID: 25599565]
  80. Can J Infect Dis Med Microbiol. 2006 Sep;17(5):287-90 [PMID: 18382641]
  81. Nature. 2018 Jun;558(7710):440-444 [PMID: 29899444]
  82. Front Microbiol. 2018 Feb 27;9:295 [PMID: 29535686]
  83. Environ Microbiol Rep. 2019 Aug;11(4):581-588 [PMID: 31102321]
  84. mSystems. 2021 Jun 29;6(3):e0111620 [PMID: 34100635]
  85. Appl Environ Microbiol. 2002 Sep;68(9):4301-6 [PMID: 12200279]
  86. Curr Opin Microbiol. 2018 Oct;45:156-163 [PMID: 29883774]
  87. Science. 2004 Jun 11;304(5677):1634-7 [PMID: 15192219]
  88. J Biotechnol. 2007 Mar 30;129(1):3-5 [PMID: 17208324]
  89. J Nat Prod. 2007 Jan;70(1):89-94 [PMID: 17253855]
  90. FEMS Microbiol Lett. 1999 Nov 1;180(1):1-6 [PMID: 10547437]
  91. mSystems. 2020 Sep 15;5(5): [PMID: 32934119]
  92. J Antimicrob Chemother. 2011 Sep;66(9):1941-4 [PMID: 21700626]
  93. FEMS Microbiol Lett. 2003 Jan 28;218(2):223-30 [PMID: 12586396]
  94. Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87 [PMID: 31032519]
  95. Microbiol Mol Biol Rev. 2015 Nov 25;80(1):1-43 [PMID: 26609051]
  96. Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11054-9 [PMID: 26216986]
  97. Metab Eng. 2018 May;47:334-345 [PMID: 29548983]
  98. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83 [PMID: 9618454]

Word Cloud

Created with Highcharts 10.0.0novelnaturalmicrobiomesantibioticspotentialdiscusserawealthsecondarymetabolitesmicroorganismsbiosyntheticapproachesbiosynthesispeptidesproductsstandbrinkpost-antibioticdireneedantimicrobialcompoundsMicroorganismsproduceso-calledprolificsourcefarHoweverrediscoveryknownwell-studiedculturedfactmajorityenvironmentreachmeansconventionalcultivationtechniquesledexplorationmicrobialcommunitiesminireviewsequence-basedanalysesexposedunprecedentedmetaboliteproductionsoilmarinehost-associatedfocusnon-ribosomalpolyketidesFurthermorecomplexitylackstandardizedmethodologycomplicatedcomparisonsacrossbiomesYetevencommonlysampledholdpromiseprovidingclasseslastlydevelopmentappliedtranslationimmensediversityprocurementproductEarth-Bioprospectinganti-microbialagentsmeta-omicsAntibioticsMicrobiomesNaturalNonribosomalPolyketidesSecondary

Similar Articles

Cited By (9)