Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ϵ.

Joseph M Dahl, Natalie Thomas, Maxwell A Tracy, Brady L Hearn, Lalith Perera, Scott R Kennedy, Alan J Herr, Thomas A Kunkel
Author Information
  1. Joseph M Dahl: Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA.
  2. Natalie Thomas: Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA.
  3. Maxwell A Tracy: Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA.
  4. Brady L Hearn: Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA.
  5. Lalith Perera: Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA.
  6. Scott R Kennedy: Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA. ORCID
  7. Alan J Herr: Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA.
  8. Thomas A Kunkel: Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA. ORCID

Abstract

We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.

References

  1. Nat Protoc. 2007;2(1):31-4 [PMID: 17401334]
  2. Sci Rep. 2019 Jan 29;9(1):923 [PMID: 30696917]
  3. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498-502 [PMID: 8341661]
  4. J Biol Chem. 2003 Apr 18;278(16):14082-6 [PMID: 12571237]
  5. Annu Rev Biochem. 2017 Jun 20;86:417-438 [PMID: 28301743]
  6. G3 (Bethesda). 2018 Mar 2;8(3):1019-1029 [PMID: 29352080]
  7. J Biol Chem. 2009 Nov 13;284(46):31555-63 [PMID: 19776424]
  8. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  9. J Am Chem Soc. 2014 May 14;136(19):7117-31 [PMID: 24761828]
  10. Mol Cell. 2004 Nov 19;16(4):609-18 [PMID: 15546620]
  11. EMBO J. 1996 Mar 1;15(5):1182-92 [PMID: 8605889]
  12. Gene. 1992 Mar 1;112(1):139-44 [PMID: 1551594]
  13. Cell. 1999 Oct 15;99(2):155-66 [PMID: 10535734]
  14. J Biol Chem. 2001 Nov 23;276(47):43824-8 [PMID: 11568188]
  15. Curr Biol. 2006 Jan 24;16(2):202-7 [PMID: 16431373]
  16. Crit Rev Biochem Mol Biol. 2005 Mar-Apr;40(2):115-28 [PMID: 15814431]
  17. EMBO J. 1992 Nov;11(11):4227-37 [PMID: 1396603]
  18. Fam Cancer. 2019 Apr;18(2):173-178 [PMID: 30368636]
  19. Trends Cell Biol. 2016 Sep;26(9):640-654 [PMID: 27262731]
  20. Nat Genet. 2013 Feb;45(2):136-44 [PMID: 23263490]
  21. Nat Struct Mol Biol. 2021 Dec;28(12):1020-1028 [PMID: 34887558]
  22. Biochemistry. 2004 Apr 6;43(13):3853-61 [PMID: 15049692]
  23. Nat Commun. 2019 Jan 22;10(1):373 [PMID: 30670696]
  24. Int J Oncol. 2014 Jul;45(1):77-81 [PMID: 24788313]
  25. Cell. 2019 Apr 18;177(3):782-796.e27 [PMID: 30955892]
  26. J Mol Biol. 1993 Dec 5;234(3):779-815 [PMID: 8254673]
  27. Biochemistry. 2002 Mar 26;41(12):3943-51 [PMID: 11900537]
  28. Fam Cancer. 2015 Sep;14(3):437-48 [PMID: 25860647]
  29. Bioessays. 2017 Aug;39(8): [PMID: 28749073]
  30. Nat Struct Mol Biol. 2014 Jan;21(1):49-55 [PMID: 24292646]
  31. Mol Cell. 2008 Apr 25;30(2):137-44 [PMID: 18439893]
  32. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  33. Cell Cycle. 2006 May;5(9):958-62 [PMID: 16687920]
  34. Nat Struct Mol Biol. 2006 Jan;13(1):35-43 [PMID: 16369485]
  35. ACS Synth Biol. 2015 Sep 18;4(9):975-86 [PMID: 25871405]
  36. Nature. 2014 Sep 11;513(7517):202-9 [PMID: 25079317]
  37. Hum Mol Genet. 2013 Jul 15;22(14):2820-8 [PMID: 23528559]
  38. Nucleic Acids Res. 1993 Feb 25;21(4):787-802 [PMID: 8451181]
  39. Nucleic Acids Res. 1980 Feb 11;8(3):657-71 [PMID: 6255449]
  40. J Biol Chem. 1980 Aug 10;255(15):7149-54 [PMID: 6248549]
  41. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8924-8 [PMID: 3194400]
  42. Genet Med. 2016 Apr;18(4):325-32 [PMID: 26133394]
  43. Biochemistry. 1998 Feb 10;37(6):1513-22 [PMID: 9484221]
  44. Genetics. 2001 Sep;159(1):47-64 [PMID: 11560886]
  45. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4949-54 [PMID: 20194773]
  46. FEBS Lett. 2004 Nov 5;577(1-2):111-6 [PMID: 15527770]
  47. Cell. 1989 Oct 6;59(1):219-28 [PMID: 2790959]
  48. Nat Commun. 2019 Jan 22;10(1):374 [PMID: 30670691]
  49. Nucleic Acids Res. 2001 Mar 1;29(5):1017-26 [PMID: 11222749]
  50. Cold Spring Harb Perspect Biol. 2013 Jun 01;5(6): [PMID: 23732474]
  51. Cancer Res. 2014 Apr 1;74(7):1895-901 [PMID: 24525744]
  52. Biochim Biophys Acta. 2010 May;1804(5):1041-8 [PMID: 20079883]
  53. DNA Repair (Amst). 2012 Aug 1;11(8):649-56 [PMID: 22682724]
  54. Nature. 2012 Jul 18;487(7407):330-7 [PMID: 22810696]
  55. J Vis Exp. 2018 Jul 26;(137): [PMID: 30102287]
  56. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4 [PMID: 1831267]
  57. DNA Repair (Amst). 2015 Jul;31:41-51 [PMID: 25996407]
  58. Cell. 2017 Nov 16;171(5):1042-1056.e10 [PMID: 29056344]
  59. Annu Rev Biochem. 2005;74:283-315 [PMID: 15952889]
  60. Nature. 2013 May 2;497(7447):67-73 [PMID: 23636398]
  61. J Biol Chem. 1989 Jun 25;264(18):10858-66 [PMID: 2659595]
  62. J Biol Chem. 2004 Apr 23;279(17):16895-8 [PMID: 14988392]
  63. DNA Repair (Amst). 2011 May 5;10(5):497-505 [PMID: 21429821]
  64. Nat Rev Cancer. 2016 Feb;16(2):71-81 [PMID: 26822575]
  65. EMBO J. 1991 Jan;10(1):25-33 [PMID: 1989886]

Grants

  1. Z01 ES065070/NIEHS NIH HHS
  2. Z01 ES043010/Intramural NIH HHS
  3. R01 GM118854/NIGMS NIH HHS

MeSH Term

DNA Polymerase II
DNA Replication
DNA, Fungal
Mutation
Mutation Rate
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins

Chemicals

DNA, Fungal
Saccharomyces cerevisiae Proteins
DNA Polymerase II

Word Cloud

Created with Highcharts 10.0.0DNAexonucleasepolymeraseϵmutationspol2-Y473Fmutationpol2-N378Ktwodomainincreasesratedouble-strandedactivitydegradesdataactivesitePolrequiredproofreadingpolymerizationprobabilityreportpropertiesSaccharomycescerevisiaeOne20-foldsimilarcatalyticallydeadpol2-D290A/E290Amutantstrongermutatorretainabilityexcisenucleotideimpairedpoorlysingle-strandedelevatedrelativesuggestreducescapacityenzymeperformcatalysisimpairspartitioningRelativewild-typevariantsdecreasedNTPconcentrationelicitswitchordermagnitudeneitherappearsaltersequencespecificityN378KstimulatesincreasingincorporationextensionmismatchConsideredtogetherindicateimpairingprimerstrandtransferpathwaycommonelucidatingassociationhomologoushumanϵ withcancerProbingmechanismsmutators

Similar Articles

Cited By