High glucose mediates apoptosis and osteogenesis of MSCs via downregulation of AKT-Sirt1-TWIST.
Wenxia Ren, Miaomiao Chai, Mingli Jiang, Yan Zhou, Wensong Tan
Author Information
Wenxia Ren: State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Miaomiao Chai: State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Mingli Jiang: State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Yan Zhou: State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. zhouyan@ecust.edu.cn. ORCID
Wensong Tan: State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
BACKGROUND: Mesenchymal stem cells have been widely used in the treatment of diabetes mellitus. However, hyperglycemia associated with DM promotes cell apoptosis and affects osteogenic differentiation of MSCs in varying degrees, leading to osteoporosis in DM patients. Therefore, in this paper, the effect of high glucose on apoptosis and osteogenesis of MSCs was investigated and underlying mechanism was further determined. METHODS AND RESULTS: Intracellular ROS levels were determined using probe DCFH-DA. MMP was detected using JC-1 staining. Cell apoptosis was detected using Annexin V-FITC/PI and Flow Cytometer. The expression of genes and protein was detected by qRT-PCR and Western blot respectively. The results showed high glucose induced MSC apoptosis but promoted its osteogenesis. Western blot analysis revealed that high glucose downregulated AKT-Sirt1-TWIST pathway. Activation of Sirt1 via SRT1720 increased TWIST expression, alleviated MSC apoptosis and promoted osteogenesis of MSCs. TWIST knockdown studies demonstrated that inhibition of TWIST intensified high glucose-induced apoptosis but promoted osteogenesis differentiation of MSCs. TWIST is likely to be a new regulator for cross talk between Sirt1 and its downstream targets. CONCLUSION: Our data demonstrates that high glucose induces MSC apoptosis and enhances osteogenesis differentiation via downregulation of AKT-Sirt1-TWIST.
Mahmoud M, Abu-Shahba N, Azmy O et al (2019) Impact of diabetes mellitus on human mesenchymal stromal cell biology and functionality: implications for autologous transplantation. Stem Cell Rev Rep 15(2):194–217. https://doi.org/10.1007/s12015-018-9869-y
[DOI: 10.1007/s12015-018-9869-y]
Sávio-Silva C, Beyerstedt S, Soinski-Sousa PE et al (2020) Mesenchymal stem cell therapy for diabetic kidney disease: a review of the studies using syngeneic, autologous, allogeneic, and xenogeneic cells. Stem Cells Int 2020:8833725. https://doi.org/10.1155/2020/8833725
[DOI: 10.1155/2020/8833725]
Brown C, McKee C, Bakshi S et al (2019) Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regener Med 13(9):1738–1755. https://doi.org/10.1002/term.2914
[DOI: 10.1002/term.2914]
Ksiazek K, Passos JF, Olijslagers S, von Zglinicki T (2008) Mitochondrial dysfunction is a possible cause of accelerated senescence of mesothelial cells exposed to high glucose. Biochem Biophys Res Commun 366(3):793–799. https://doi.org/10.1016/j.bbrc.2007.12.021
[DOI: 10.1016/j.bbrc.2007.12.021]
Bammert TD, Hijmans JG, Reiakvam WR et al (2017) High glucose derived endothelial microparticles increase active caspase-3 and reduce microRNA-Let-7a expression in endothelial cells. Biochem Biophys Res Commun 493(2):1026–1029. https://doi.org/10.1016/j.bbrc.2017.09.098
[DOI: 10.1016/j.bbrc.2017.09.098]
Wang YP, Wang YQ, Lu Y et al (2019) High glucose enhances the odonto/osteogenic differentiation of stem cells from apical papilla via NF-KappaB signaling pathway. Biomed Res Int 2019:5068258. https://doi.org/10.1155/2019/5068258
[DOI: 10.1155/2019/5068258]
Dong K, Hao P, Xu S et al (2017) Alpha-Lipoic acid alleviates high-glucose suppressed osteogenic differentiation of MC3T3-E1 cells via antioxidant effect and PI3K/Akt signaling pathway. Cell Physiol Biochem 42(5):1897–1906. https://doi.org/10.1159/000479605
[DOI: 10.1159/000479605]
Yun UJ, Lee IH, Lee JS et al (2020) Ginsenoside Rp1, a ginsenoside derivative, augments anti-cancer effects of actinomycin D via downregulation of an AKT-SIRT1 pathway. Cancers (Basel) 12(3):605. https://doi.org/10.3390/cancers12030605
[DOI: 10.3390/cancers12030605]
Farghali H, Kemelo MK, Canová NK (2019) SIRT1 modulators in experimentally induced liver injury. Oxid Med Cell Longev 2019:8765954. https://doi.org/10.1155/2019/8765954
[DOI: 10.1155/2019/8765954]
Wilkinson FL, Schiro A, Inglott FS et al (2019) Suppression of SIRT1 in diabetic conditions induces osteogenic differentiation of human vascular smooth muscle cells via RUNX2 signalling. Sci Rep 9(1):878. https://doi.org/10.1038/s41598-018-37027-2
[DOI: 10.1038/s41598-018-37027-2]
Feng H, Wang J, Xu J et al (2017) The expression of SIRT1 regulates the metastaticplasticity of chondrosarcoma cells by inducing epithelial-mesenchymal transition. Sci Rep 7:41203. https://doi.org/10.1038/s41598-018-37027-2
[DOI: 10.1038/s41598-018-37027-2]
Bialek P, Kern B, Yang X et al (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6(3):423–435. https://doi.org/10.1016/S1534-5807(04)00058-9
[DOI: 10.1016/S1534-5807(04)00058-9]
Lee JH, Yun CW, Hur J et al (2018) Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar Drugs 16(4):121. https://doi.org/10.3390/md16040121
[DOI: 10.3390/md16040121]
Lee SH, Lee JH, Yoo SY et al (2013) Hypoxia inhibits cellular senescence to restore the therapeutic potential of old human endothelial progenitor cells via the hypoxia-inducible factor-1α-TWIST-p21 Axis. Arterioscle Thromb Vasc Biol 33(10):2407–2414. https://doi.org/10.1161/ATVBAHA.113.301931
[DOI: 10.1161/ATVBAHA.113.301931]
Shan L, Yang D, Zhu D et al (2019) High glucose promotes annulus fibrosus cell apoptosis through activating the JNK and p38 MAPK pathways. Biosci Rep 39(7):20190853
[DOI: 10.1042/BSR20190853]
Raaz U, Schellinger IN, Chernogubova E et al (2015) Transcription factor Runx2 promotes aortic fibrosis and stiffness in type 2 diabetes mellitus. Circ Res 117:513–524. https://doi.org/10.1161/CIRCRESAHA.115.306341
[DOI: 10.1161/CIRCRESAHA.115.306341]
Yamawaki I, Taguchi Y, Komasa S et al (2017) Effects of glucose concentration on osteogenic differentiation of type II diabetes mellitus rat bone marrow-derived mesenchymal stromal cells on a nano-scale modified titanium. J Periodontal Res 52(4):761–771. https://doi.org/10.1111/jre.12446
[DOI: 10.1111/jre.12446]
Wang W, Zhang X, Zheng J (2010) High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Mol Cell Biochem 338(1–2):115–122. https://doi.org/10.1007/s11010-009-0344-6
[DOI: 10.1007/s11010-009-0344-6]
Zhai Z, Chen W, Hu Q et al (2020) High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem 167(6):613–621. https://doi.org/10.1093/jb/mvaa011
[DOI: 10.1093/jb/mvaa011]
Wang RZ, Zhang YX, Jin FJ et al (2019) High-glucose-induced miR-214-3p inhibits BMSCs osteogenic differentiation in type 1 diabetes mellitus. Cell Death Discov 5:143. https://doi.org/10.1038/s41420-019-0223-1
[DOI: 10.1038/s41420-019-0223-1]
Chen Y, Chen L, Huang R et al (2021) Investigation for GSK3β expression in diabetic osteoporosis and negative osteogenic effects of GSK3β on bone marrow mesenchymal stem cells under a high glucose microenvironment. Biochem Biophys Res Commun 534:727–733. https://doi.org/10.1016/j.bbrc.2020.11.010
[DOI: 10.1016/j.bbrc.2020.11.010]
Nuschke A, Rodrigues M, Wells AW et al (2016) Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Res Ther 7(1):1–9. https://doi.org/10.1186/s13287-016-0436-7
[DOI: 10.1186/s13287-016-0436-7]
Wei J, Shimazu J, Makinistoglu MP et al (2015) Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161(7):1576–1591. https://doi.org/10.1016/j.cell.2015.05.029
[DOI: 10.1016/j.cell.2015.05.029]
Jang J, Huh YJ, Cho HJ et al (2017) SIRT1 enhances the survival of human embryonic stem cells by promoting DNA repair. Stem Cell Rep 9(2):629–641. https://doi.org/10.1016/j.stemcr.2017.06.001
[DOI: 10.1016/j.stemcr.2017.06.001]
Ding M, Feng N, Tang D et al (2018) Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res 65(2):e12491. https://doi.org/10.1111/jpi.12491
[DOI: 10.1111/jpi.12491]
Ma S, Feng J, Zhang R et al (2017) SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev 2017:4602715. https://doi.org/10.1155/2017/4602715
[DOI: 10.1155/2017/4602715]
Yang G, Jin L, Zheng D et al (2019) Fucoxanthin alleviates oxidative stress through Akt/SIRT1/FoxO3α signaling to inhibit Hg-induced renal fibrosis in GMCs. Mar Drugs 17(2):702. https://doi.org/10.3390/md17120702
[DOI: 10.3390/md17120702]
Nayak D, Kumar A, Chakraborty S et al (2017) Inhibition of Twist1-mediated invasion by Chk2 promotes premature senescence in p53-defective cancer cells. Cell Death Differ 24(7):1275–1287. https://doi.org/10.1038/cdd.2017.70
[DOI: 10.1038/cdd.2017.70]
Chen Y, Zhang L, Ren J et al (2020) Intermedin attenuates aging-associated vascular calcification in rats by upregulating sirtuin1. Aging (Albany NY) 12(7):5651–5674. https://doi.org/10.18632/aging.102934
[DOI: 10.18632/aging.102934]
Feng G, Zheng K, Song D et al (2016) SIRT1 was involved in TNF-α-promoted osteogenic differentiation of human DPSCs through Wnt/β-catenin signal. In Vitro Cell Dev Biol Anim 52(10):1001–1011. https://doi.org/10.1007/s11626-016-0070-9
[DOI: 10.1007/s11626-016-0070-9]
Yang DC, Yang MH, Tsai CC et al (2011) Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS ONE 6(9):e23965. https://doi.org/10.1371/journal.pone.0023965
[DOI: 10.1371/journal.pone.0023965]
Camp E, Anderson PJ, Zannettino ACW et al (2017) Tyrosine kinase receptor c-ros-oncogene 1 mediates TWIST-1 regulation of human mesenchymal stem cell lineage commitment. Bone 94:98–107. https://doi.org/10.1016/j.bone.2016.09.019
[DOI: 10.1016/j.bone.2016.09.019]
Pribadi C, Camp E, Cakouros D et al (2020) Pharmacological targeting of KDM6A and KDM6B, as a novel therapeutic strategy for treating craniosynostosis in Saethre-Chotzen syndrome. Stem Cell Res Ther 11(1):529. https://doi.org/10.1186/s13287-020-02051-5
[DOI: 10.1186/s13287-020-02051-5]
Rathinavelu S, Guidry-elizondo C, Banu J (2018) Molecular modulation of osteoblasts and osteoclasts in type 2 diabetes. J Diabetes Res 2018:6354787. https://doi.org/10.1155/2018/6354787
[DOI: 10.1155/2018/6354787]
Grants
No. 2018YFC1105800/National Key Research and Development Program of China
No. 81671841/National Natural Science Foundation of China
No. 22221818014/Fundamental Research Funds for the Central Universities