LuxT Is a Global Regulator of Low-Cell-Density Behaviors, Including Type III Secretion, Siderophore Production, and Aerolysin Production, in Vibrio harveyi.

Michaela J Eickhoff, Chenyi Fei, Jian-Ping Cong, Bonnie L Bassler
Author Information
  1. Michaela J Eickhoff: Department of Molecular Biology, Princeton Universitygrid.16750.35, Princeton, New Jersey, USA. ORCID
  2. Chenyi Fei: Department of Molecular Biology, Princeton Universitygrid.16750.35, Princeton, New Jersey, USA.
  3. Jian-Ping Cong: Department of Molecular Biology, Princeton Universitygrid.16750.35, Princeton, New Jersey, USA.
  4. Bonnie L Bassler: Department of Molecular Biology, Princeton Universitygrid.16750.35, Princeton, New Jersey, USA. ORCID

Abstract

Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and posttranscriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a population-wide scale. Recently, the TetR family transcriptional regulator LuxT was shown to control Vibrio harveyi 1, encoding the Qrr1 small RNA that functions at the core of the QS regulatory cascade. Here, we use RNA sequencing to reveal that, beyond the control of 1, LuxT is a global regulator of 414 V. harveyi genes, including those involved in type III secretion, siderophore production, and aerolysin toxin biosynthesis. Importantly, LuxT directly represses , encoding a GntR family transcriptional regulator, and LuxT control of type III secretion, siderophore, and aerolysin genes occurs by two mechanisms, one that is SwrZ dependent and one that is SwrZ independent. All of these target genes specify QS-controlled behaviors that are enacted when V. harveyi is at low cell density. Thus, LuxT and SwrZ function in parallel with QS to drive particular low-cell-density behaviors. Phylogenetic analyses reveal that is highly conserved among , but is less well conserved. In a test case, we find that in Aliivibrio fischeri, LuxT also represses . SwrZ is a repressor of A. fischeri siderophore production genes. Thus, LuxT repression of drives the activation of A. fischeri siderophore gene expression. Our results indicate that LuxT is a major regulator among , and in the species that also possess , LuxT functions with SwrZ to control gene expression. Bacteria precisely tune gene expression patterns to successfully react to changes that occur in the environment. Defining the mechanisms that enable bacteria to thrive in diverse and fluctuating habitats, including in host organisms, is crucial for a deep understanding of the microbial world and also for the development of effective applications to promote or combat particular bacteria. In this study, we show that a regulator called LuxT controls over 400 genes in the marine bacterium Vibrio harveyi and that LuxT is highly conserved among species, ubiquitous marine bacteria that often cause disease. We characterize the mechanisms by which LuxT controls genes involved in virulence and nutrient acquisition. We show that LuxT functions in parallel with a set of regulators of the bacterial cell-to-cell communication process called quorum sensing to promote V. harveyi behaviors at low cell density.

Keywords

References

  1. Microbiol Mol Biol Rev. 2013 Sep;77(3):440-75 [PMID: 24006471]
  2. J Fish Dis. 2012 Feb;35(2):153-67 [PMID: 22233514]
  3. J Am Chem Soc. 2014 Apr 16;136(15):5615-8 [PMID: 24701966]
  4. Cell. 2004 Jul 9;118(1):69-82 [PMID: 15242645]
  5. PLoS Comput Biol. 2021 Jan 4;17(1):e1008130 [PMID: 33395414]
  6. FEMS Microbiol Rev. 2019 May 1;43(3):304-339 [PMID: 30721976]
  7. Infect Immun. 1971 Oct;4(4):503-5 [PMID: 5154892]
  8. mBio. 2015 Apr 07;6(2): [PMID: 25852158]
  9. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  10. Environ Microbiol Rep. 2010 Feb;2(1):81-89 [PMID: 20686623]
  11. Nucleic Acids Res. 2000 Jan 1;28(1):15-8 [PMID: 10592170]
  12. Biochemistry. 1987 Aug 25;26(17):5471-7 [PMID: 2823881]
  13. EMBO J. 2013 Jul 31;32(15):2158-71 [PMID: 23838640]
  14. Protein Expr Purif. 2000 Oct;20(1):87-94 [PMID: 11035955]
  15. Infect Immun. 1975 Jun;11(6):1312-9 [PMID: 166917]
  16. Gene. 1998 Jan 30;207(2):149-57 [PMID: 9511756]
  17. Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726): [PMID: 28630149]
  18. Genes Dev. 2007 Jan 15;21(2):221-33 [PMID: 17234887]
  19. Genes Dev. 2011 Feb 15;25(4):397-408 [PMID: 21325136]
  20. J Biol Chem. 1995 Nov 10;270(45):26723-6 [PMID: 7592901]
  21. Microbiologyopen. 2013 Feb;2(1):182-94 [PMID: 23335587]
  22. Mol Microbiol. 1994 Jul;13(2):273-86 [PMID: 7984107]
  23. Microb Pathog. 2019 Oct;135:103645 [PMID: 31356927]
  24. J Bacteriol. 2004 Nov;186(21):7327-36 [PMID: 15489444]
  25. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  26. Environ Microbiol Rep. 2010 Feb 1;2(1):104-111 [PMID: 21304833]
  27. Front Microbiol. 2016 Aug 25;7:1337 [PMID: 27610107]
  28. Biochim Biophys Acta. 2000 Dec 1;1494(3):226-35 [PMID: 11121579]
  29. Annu Rev Microbiol. 2014;68:415-38 [PMID: 25002086]
  30. Mol Microbiol. 2012 Feb;83(3):599-611 [PMID: 22229925]
  31. J Bacteriol. 1990 Jul;172(7):3701-6 [PMID: 2163384]
  32. Cell. 2002 Aug 9;110(3):303-14 [PMID: 12176318]
  33. PLoS Genet. 2021 Apr 1;17(4):e1009336 [PMID: 33793568]
  34. Nat Rev Microbiol. 2016 Aug 11;14(9):576-88 [PMID: 27510864]
  35. Mol Cell. 2010 Feb 26;37(4):567-79 [PMID: 20188674]
  36. Annu Rev Cell Dev Biol. 2005;21:319-46 [PMID: 16212498]
  37. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7581-7586 [PMID: 29954861]
  38. Microbiol Spectr. 2016 Feb;4(1): [PMID: 26999395]
  39. J Biol Chem. 2019 Aug 2;294(31):11685-11700 [PMID: 31197038]
  40. Mol Microbiol. 2016 Sep;101(5):823-40 [PMID: 27191515]
  41. Mol Microbiol. 2000 May;36(4):940-54 [PMID: 10844680]
  42. Arch Microbiol. 2012 Jun;194(6):439-52 [PMID: 22130678]
  43. Bioessays. 2008 Jun;30(6):542-55 [PMID: 18478531]
  44. J Bacteriol. 2021 Sep 23;203(20):e0027621 [PMID: 34339299]
  45. Mol Microbiol. 1999 Jan;31(2):665-77 [PMID: 10027982]
  46. PLoS One. 2015 Dec 04;10(12):e0143935 [PMID: 26636765]
  47. PLoS Pathog. 2017 Jul 17;13(7):e1006504 [PMID: 28715477]
  48. Mol Syst Biol. 2011 May 24;7:491 [PMID: 21613980]
  49. J Bacteriol. 1997 Jun;179(12):4043-5 [PMID: 9190823]
  50. Nat Rev Microbiol. 2017 Jun;15(6):323-337 [PMID: 28392566]
  51. Infect Immun. 2004 Nov;72(11):6659-65 [PMID: 15501799]
  52. J Mol Biol. 1981 Mar 25;147(1):195-7 [PMID: 7265238]
  53. J Bacteriol. 2013 Feb;195(3):436-43 [PMID: 23204455]
  54. Environ Microbiol. 2021 Sep;23(9):5273-5288 [PMID: 33989448]
  55. J Bacteriol. 2006 Apr;188(7):2625-35 [PMID: 16547050]
  56. Mol Microbiol. 2020 Aug;114(2):244-261 [PMID: 32259318]
  57. J Bacteriol. 2004 Oct;186(20):6902-14 [PMID: 15466044]
  58. Front Microbiol. 2018 Aug 02;9:1766 [PMID: 30116232]
  59. J Bacteriol. 2004 Jun;186(12):3794-805 [PMID: 15175293]
  60. Appl Environ Microbiol. 2010 Aug;76(15):4996-5004 [PMID: 20543047]
  61. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]
  62. J Bacteriol. 1988 Apr;170(4):1913-9 [PMID: 2832388]
  63. Mol Microbiol. 2000 Jan;35(1):139-49 [PMID: 10632884]

Grants

  1. R37 GM065859/NIGMS NIH HHS
  2. T32 GM007388/NIGMS NIH HHS

MeSH Term

Siderophores
Phylogeny
Vibrio
Quorum Sensing
Bacterial Proteins
Gene Expression Regulation, Bacterial

Chemicals

Siderophores
aerolysin
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0LuxTharveyigenesbacteriageneregulatorSwrZQSmechanismsexpressioncontrolsiderophoresensingcalledtranscriptionalVibriofunctionsVIIIbehaviorsconservedamongfischerialsocommunicationprocessregulatoryfamily1encodingRNArevealincludinginvolvedtypesecretionproductionaerolysinrepressesonelowcelldensityThusparallelparticularhighlyspeciespromoteshowcontrolsmarinevirulencequorumProductionQuorumchemicalproducereleasedetectextracellularsignalingmoleculesautoinducersViacombinedposttranscriptionalallowscollectivelyalterpopulation-widescaleRecentlyTetRshownQrr1smallcorecascadeusesequencingbeyondglobal414toxinbiosynthesisImportantlydirectlyGntRoccurstwodependentindependenttargetspecifyQS-controlledenactedfunctiondrivelow-cell-densityPhylogeneticanalyseslesswelltestcasefindAliivibriorepressorrepressiondrivesactivationresultsindicatemajorpossessBacteriapreciselytunepatternssuccessfullyreactchangesoccurenvironmentDefiningenablethrivediversefluctuatinghabitatshostorganismscrucialdeepunderstandingmicrobialworlddevelopmenteffectiveapplicationscombatstudy400bacteriumubiquitousoftencausediseasecharacterizenutrientacquisitionsetregulatorsbacterialcell-to-cellGlobalRegulatorLow-Cell-DensityBehaviorsIncludingTypeSecretionSiderophoreAerolysinregulationvibrio

Similar Articles

Cited By (3)