Protective effects of Dapagliflozin on the vulnerability of ventricular arrhythmia in rats with pulmonary artery hypertension induced by monocrotaline.

Tianyou Qin, Bin Kong, Chang Dai, Zheng Xiao, Jin Fang, Wei Shuai, He Huang
Author Information
  1. Tianyou Qin: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
  2. Bin Kong: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
  3. Chang Dai: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
  4. Zheng Xiao: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
  5. Jin Fang: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
  6. Wei Shuai: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
  7. He Huang: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.

Abstract

Monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) has been reported to cause right heart failure (RHF). Moreover, Right heart diseases have been determined to cause ventricular arrhythmia (VA). So we can conclude that MCT-induced PAH increases the incidence of VA. In addition, Previous studies have determined the benefits of Dapagliflozin (DA) on the cardiac system, but the responses of MCT-induced RHF to DA are not fully reported. So the present study sought to evaluate the effects of DA on the MCT-induced PAH. A dose intraperitoneal injection of MCT (60 mg/kg) was carried out to induce a rat model with PAH. DA (60 mg/l) was administered for 4 weeks following MCT injection. Echocardiography, body weight, blood pressure, blood glucose, electrophysiological study, and Western blot were performed. Four weeks after the MCT injection, MCT-treated rats decreased body weight, blood glucose and blood pressure. In addition, MCT caused the formation of PAH and RHF. Moreover, MCT-induced PAH rats increased the incidence of VA, prolonged action potential duration (APD), and shortened effective refractory period (ERP). Additionally, PAH rats significantly prevented the activated expressions of Ion channel proteins such as potassium channel (Kv1.5, Kv2.1, Kv4.2, Kv4.3) and L-type Ca channel (Cav1.2). As we expected, these changes above in PAH rats were reversed when DA was administered. Mechanistically, DA significantly reduced the levels of toll-like receptor (TLR4), the nuclear factor kappa B (NF-κB) in MCT-treated rats. In conclusion, these findings determine that DA reduces the vulnerability of VA in PAH rats through the TLR4/NF-κB signaling pathway.

Keywords

References

  1. Eur Heart J. 2021 Sep 21;42(36):3727-3738 [PMID: 34448003]
  2. Cardiovasc Diabetol. 2021 May 7;20(1):100 [PMID: 33962654]
  3. J Am Coll Cardiol. 2005 Dec 20;46(12):2329-34 [PMID: 16360067]
  4. J Am Coll Cardiol. 2011 Feb 15;57(7):821-8 [PMID: 21310318]
  5. Diabetes Obes Metab. 2017 Aug;19(8):1135-1146 [PMID: 28244693]
  6. Nutr Metab Cardiovasc Dis. 2019 Sep;29(9):991-998 [PMID: 31353205]
  7. Eur Heart J. 1992 Sep;13 Suppl D:24-32 [PMID: 1396856]
  8. Circulation. 2000 Jan 4-11;101(1):40-6 [PMID: 10618302]
  9. Oxid Med Cell Longev. 2019 Apr 17;2019:5703764 [PMID: 31178968]
  10. Life Sci. 2016 Mar 1;148:24-30 [PMID: 26892148]
  11. Circulation. 2014 Dec 9;130(24):2215-45 [PMID: 25085962]
  12. J Card Fail. 2015 Jun;21(6):519-34 [PMID: 25953697]
  13. Hypertension. 2011 Sep;58(3):512-8 [PMID: 21747043]
  14. J Am Coll Cardiol. 2019 Sep 10;74(10):1332-1347 [PMID: 31488271]
  15. J Am Heart Assoc. 2020 Sep;9(17):e015307 [PMID: 32856514]
  16. N Engl J Med. 2020 Oct 8;383(15):1413-1424 [PMID: 32865377]
  17. Circulation. 2013 Jul 23;128(4):388-400 [PMID: 23877061]
  18. Cardiovasc Drugs Ther. 2017 Jun;31(3):233-246 [PMID: 28643218]
  19. Drugs. 2019 Jul;79(10):1135-1146 [PMID: 31236801]
  20. Pharmacotherapy. 2017 Apr;37(4):481-491 [PMID: 28102030]
  21. Front Pharmacol. 2020 Jul 09;11:993 [PMID: 32733242]
  22. Trends Cardiovasc Med. 2016 Apr;26(3):209-18 [PMID: 26391345]
  23. Channels (Austin). 2020 Jan 1;14(1):181-189 [PMID: 32491968]
  24. Int Heart J. 2017 Dec 12;58(6):948-956 [PMID: 29151490]
  25. J Cardiovasc Pharmacol Ther. 2004 Jun;9(2):129-44 [PMID: 15309249]
  26. J Am Coll Cardiol. 2011 Feb 22;57(8):921-8 [PMID: 21329838]
  27. J Cardiovasc Pharmacol. 1997 Jul;30(1):124-9 [PMID: 9268231]
  28. Am J Respir Crit Care Med. 2012 Aug 1;186(3):261-72 [PMID: 22679007]
  29. N Engl J Med. 2001 Nov 15;345(20):1473-82 [PMID: 11794197]
  30. Front Cardiovasc Med. 2021 Jul 06;8:668222 [PMID: 34295927]
  31. Cardiovasc Diabetol. 2018 Apr 27;17(1):62 [PMID: 29703207]
  32. Lancet. 2020 Sep 19;396(10254):819-829 [PMID: 32877652]
  33. Endocrinology. 2008 Sep;149(9):4367-73 [PMID: 18511508]
  34. J Cardiovasc Electrophysiol. 2010 Sep;21(9):1031-7 [PMID: 20233273]
  35. Heart Rhythm. 2008 Aug;5(8):1095-1102 [PMID: 18675217]
  36. Circulation. 2009 Apr 28;119(16):2250-94 [PMID: 19332472]
  37. J Immunol. 2008 May 15;180(10):6954-61 [PMID: 18453617]
  38. Cardiovasc Diabetol. 2014 Oct 26;13:148 [PMID: 25344694]
  39. Curr Pharm Des. 2018;24(17):1887-1898 [PMID: 29898648]
  40. N Engl J Med. 2019 Nov 21;381(21):1995-2008 [PMID: 31535829]
  41. Rev Port Cardiol. 2006 Jan;25(1):55-63 [PMID: 16623356]
  42. Redox Biol. 2019 Jun;24:101186 [PMID: 30978539]
  43. Eur J Pharmacol. 2019 Feb 5;844:79-86 [PMID: 30458167]
  44. Cardiovasc Diabetol. 2020 Jan 10;19(1):7 [PMID: 31924211]
  45. J Am Coll Cardiol. 2015 May 12;65(18):1976-97 [PMID: 25953750]
  46. Physiol Rev. 2007 Oct;87(4):1285-342 [PMID: 17928585]
  47. J Toxicol Environ Health B Crit Rev. 1998 Oct-Dec;1(4):271-346 [PMID: 9776954]
  48. Basic Res Cardiol. 2009 Sep;104(5):535-45 [PMID: 19288153]
  49. Eur Heart J. 2020 Sep 21;41(36):3402-3418 [PMID: 32820334]
  50. Biomed Pharmacother. 2020 Jun;126:110071 [PMID: 32172066]
  51. Diabetes. 2017 Apr;66(4):1030-1040 [PMID: 28052965]

MeSH Term

Animals
Arrhythmias, Cardiac
Benzhydryl Compounds
Disease Models, Animal
Glucosides
Hypertension, Pulmonary
Male
Monocrotaline
Pulmonary Artery
Rats
Rats, Sprague-Dawley

Chemicals

Benzhydryl Compounds
Glucosides
dapagliflozin
Monocrotaline

Word Cloud

Created with Highcharts 10.0.0PAHDAratsMCTVAMCT-inducedbloodpulmonaryhypertensionheartRHFventriculararrhythmiaDapagliflozininjectionchannelarteryreportedcauserightfailureMoreoverdeterminedincidenceadditionstudyeffects60administeredbodyweightpressureglucoseMCT-treatedsignificantlyKv42vulnerabilitymonocrotalineMonocrotaline-inducedRightdiseasescanconcludeincreasesPreviousstudiesbenefitscardiacsystemresponsesfullypresentsoughtevaluatedoseintraperitonealmg/kgcarriedinduceratmodelmg/l4 weeksfollowingEchocardiographyelectrophysiologicalWesternblotperformedFourweeksdecreasedcausedformationincreasedprolongedactionpotentialdurationAPDshortenedeffectiverefractoryperiodERPAdditionallypreventedactivatedexpressionsIonproteinspotassiumKv15Kv213L-typeCaCav1expectedchangesreversedMechanisticallyreducedlevelstoll-likereceptorTLR4nuclearfactorkappaBNF-κBconclusionfindingsdeterminereducesTLR4/NF-κBsignalingpathwayProtectiveinducedarterial

Similar Articles

Cited By